How to cite this paper
Larni-Fooeik, A., Ghasemi, N & Mohammadi, E. (2024). Insights into the application of the traveling salesman problem to logistics without considering financial risk: A bibliometric study.Management Science Letters , 14(3), 189-200.
Refrences
Agatz, N., Bouman, P., & Schmidt, M. (2018). Optimization approaches for the traveling salesman problem with drone. Transportation Science, 52(4), 965–981. https://doi.org/10.1287/trsc.2017.0791
Anily, S., & Bramel, J. (1999). Approximation Algorithms for the Capacitated Traveling Salesman Problem with Pickups and Deliveries. In Logistics (Vol. 46).
Arigliano, A., Ghiani, G., Grieco, A., Guerriero, E., & Plana, I. (2019). Time-dependent asymmetric traveling salesman problem with time windows: Properties and an exact algorithm. Discrete Applied Mathematics, 261, 28–39. https://doi.org/10.1016/j.dam.2018.09.017
Baniasadi, P., Foumani, M., Smith-Miles, K., & Ejov, V. (2020). A transformation technique for the clustered generalized traveling salesman problem with applications to logistics. European Journal of Operational Research, 285(2), 444–457. https://doi.org/10.1016/j.ejor.2020.01.053
Ben Nejma, I., & M’Hallah, R. (2021). A beam search for the equality generalized symmetric traveling salesman problem. RAIRO - Operations Research, 55(5), 3021–3039. https://doi.org/10.1051/ro/2021148
Benitez-Bravo, R., Gomez-González, R., Rivas-García, P., Botello-Álvarez, J. E., Huerta-Guevara, O. F., García-León, A. M., & Rueda-Avellaneda, J. F. (2021). Optimization of municipal solid waste collection routes in a Latin-American context. Journal of the Air and Waste Management Association, 71(11), 1415–1427. https://doi.org/10.1080/10962247.2021.1957040
Cha, H., Kim, D. K., Eun, J., & Cheong, T. (2022). Collaborative traveling salesman problem with ground vehicle as a charger for unmanned aerial vehicle. Transportation Letters. https://doi.org/10.1080/19427867.2022.2082006
Crişan, G. C., Pintea, C. M., & Palade, V. (2017). Emergency management using geographic information systems: appli-cation to the first Romanian traveling salesman problem instance. Knowledge and Information Systems, 50(1), 265–285. https://doi.org/10.1007/s10115-016-0938-8
da Silva, T. T., Chaves, A. A., Yanasse, H. H., & Luna, H. P. L. (2019). The multicommodity traveling salesman problem with priority prizes: a mathematical model and metaheuristics. Computational and Applied Mathematics, 38(4). https://doi.org/10.1007/s40314-019-0976-4
Dalavi, A. M., Gomes, A., & Javed Husain, A. (2022). Bibliometric analysis of nature inspired optimization techniques. Computers and Industrial Engineering, 169. https://doi.org/10.1016/j.cie.2022.108161
de Freitas, J. C., & Penna, P. H. V. (2020). A variable neighborhood search for flying sidekick traveling salesman prob-lem. International Transactions in Operational Research, 27(1), 267–290. https://doi.org/10.1111/itor.12671
Dienstknecht, M., Boysen, N., & Briskorn, D. (2022). The traveling salesman problem with drone resupply. OR Spectrum, 44(4), 1045–1086. https://doi.org/10.1007/s00291-022-00680-1
Du, Y., Fu, S., Lu, C., Zhou, Q., & Li, C. (2021). Simultaneous Pickup and Delivery Traveling Salesman Problem consid-ering the Express Lockers Using Attention Route Planning Network. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/5590758
Eskorouchi, A., Mohammadi, E., & Sajadi, S. J. (n.d.). Robust Portfolio Optimization based on Evidence Theory.
Felipe, A., Ortuño, M. T., & Tirado, G. (2009). New neighborhood structures for the double traveling salesman problem with multiple stacks. TOP, 17(1), 190–213. https://doi.org/10.1007/s11750-009-0080-9
Felipe, A., Ortuño, M. T., & Tirado, G. (2012). An adapted heuristic approach for a clustered traveling salesman problem with loading constraints. 4OR, 10(3), 245–265. https://doi.org/10.1007/s10288-012-0207-y
Ghanbari, H., Larni Fooeik, A., Eskorouchi, A., & Mohammadi, E. (2022). Investigating the effect of US dollar, gold and oil prices on the stock market. Journal of Future Sustainability, 2, 97–104. https://doi.org/10.5267/j.ijdns.2022.9.009
Ghanbari, H., Safari, M., Ghousi, R., Mohammadi, E., & Nakharutai, N. (2023). Bibliometric analysis of risk measures for portfolio optimization. Accounting, 9(2), 95–108. https://doi.org/10.5267/j.ac.2022.12.003
Gomes, D. E., Iglésias, M. I. D., Proença, A. P., Lima, T. M., & Gaspar, P. D. (2021). Applying a genetic algorithm to a m-tsp: Case study of a decision support system for optimizing a beverage logistics vehicles routing problem. Electronics (Switzerland), 10(18). https://doi.org/10.3390/electronics10182298
Gu, L., & Liang, G. (2022). The Effect of Bank Financing under Supply Chain-to-Chain Competition. Mathematical Prob-lems in Engineering, 2022. https://doi.org/10.1155/2022/8575338
Ha, Q. M., Deville, Y., Pham, Q. D., & Hà, M. H. (2018). On the min-cost Traveling Salesman Problem with Drone. Transportation Research Part C: Emerging Technologies, 86, 597–621. https://doi.org/10.1016/j.trc.2017.11.015
Hansknecht, C., Joormann, I., & Stiller, S. (2021). Dynamic shortest paths methods for the time-dependent tsp. Algo-rithms, 14(1). https://doi.org/10.3390/a14010021
Karimi, M. H., Mohammadi, E., Jafari, H., Ghaeli, M. R., & Eskoruchi, A. (2022). A robust linear model for the maximum expected coverage location problem considering the relative coverage. Journal of Future Sustainability, 2(2), 39–48. https://doi.org/10.5267/j.jfs.2022.9.002
Kimms, A., & Kozeletskyi, I. (2016). Core-based cost allocation in the cooperative traveling salesman problem. European Journal of Operational Research, 248(3), 910–916. https://doi.org/10.1016/j.ejor.2015.08.002
Kota, L., & Jarmai, K. (2015). Mathematical modeling of multiple tour multiple traveling salesman problem using evolu-tionary programming. Applied Mathematical Modelling, 39(12), 3410–3433. https://doi.org/10.1016/j.apm.2014.11.043
Kundu, A., Escobar, R. G., & Matis, T. I. (2022). An efficient routing heuristic for a drone-assisted delivery problem. IMA Journal of Management Mathematics, 33(4), 583–601. https://doi.org/10.1093/imaman/dpab039
Larni Fooeik, A., Ghanbari, H., Bagheriyan, M., & Mohammadi, E. (2022). Analyzing the effects of global oil, gold and palladium markets: Evidence from the Nasdaq com-posite index. Journal of Future Sustainability, 2, 105–112. https://doi.org/10.5267/j.ijdns.2022.9.010
Li, M., Zhao, Y., Xiong, X., & Ma, Y. (2020). Comprehensive optimization of the synchronous delivery network in the model of OTMD for traveling salesman problem with drone. Journal of Intelligent and Fuzzy Systems, 39(5), 7505–7519. https://doi.org/10.3233/JIFS-200818
Luo, Z., Poon, M., Zhang, Z., Liu, Z., & Lim, A. (2021). The Multi-visit Traveling Salesman Problem with Multi-Drones. Transportation Research Part C: Emerging Technologies, 128. https://doi.org/10.1016/j.trc.2021.103172
Malaguti, E., Martello, S., & Santini, A. (2018). The traveling salesman problem with pickups, deliveries, and draft limits. Omega (United Kingdom), 74, 50–58. https://doi.org/10.1016/j.omega.2017.01.005
Marín-Rodríguez, N. J., González-Ruiz, J. D., & Botero Botero, S. (2022). Dynamic Co-Movements among Oil Prices and Financial Assets: A Scientometric Analysis. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912796
Mbiadou Saleu, R. G., Deroussi, L., Feillet, D., Grangeon, N., & Quilliot, A. (2018). An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem. Networks, 72(4), 459–474. https://doi.org/10.1002/net.21846
Meng, X., Li, J., Zhou, M., & Dai, X. (2022). A Dynamic Colored Traveling Salesman Problem With Varying Edge Weights. IEEE Transactions on Intelligent Transportation Systems, 23(8), 13549–13558. https://doi.org/10.1109/TITS.2021.3125721
Montero, A., Méndez-Díaz, I., & Miranda-Bront, J. J. (2017). An integer programming approach for the time-dependent traveling salesman problem with time windows. Computers and Operations Research, 88, 280–289. https://doi.org/10.1016/j.cor.2017.06.026
Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted par-cel delivery. Transportation Research Part C: Emerging Technologies, 54, 86–109. https://doi.org/10.1016/j.trc.2015.03.005
Murray, C. C., & Raj, R. (2020). The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones. Transportation Research Part C: Emerging Technologies, 110, 368–398. https://doi.org/10.1016/j.trc.2019.11.003
Ochelska-Mierzejewska, J., Poniszewska-Marańda, A., & Marańda, W. (2021). Selected genetic algorithms for vehicle routing problem solving. Electronics (Switzerland), 10(24). https://doi.org/10.3390/electronics10243147
Pina-Pardo, J. C., Silva, D. F., & Smith, A. E. (2021). The traveling salesman problem with release dates and drone resup-ply. Computers and Operations Research, 129. https://doi.org/10.1016/j.cor.2020.105170
Rajabi, M. S., Beigi, P., & Aghakhani, S. (n.d.). Drone Delivery Systems and Energy Management: A Review and Future Trends.
Roberti, R., & Wen, M. (2016). The Electric Traveling Salesman Problem with Time Windows. Transportation Research Part E: Logistics and Transportation Review, 89, 32–52. https://doi.org/10.1016/j.tre.2016.01.010
Ruan, M., Shen, C., Tang, J., Qi, C., & Qiu, S. (2021). A double traveling salesman problem with three-dimensional load-ing constraints for bulky item delivery. IEEE Access, 9, 13052–13063. https://doi.org/10.1109/ACCESS.2021.3051248
Sabripoor, A., Amirsahami, A., & Ghousi, R. (2023). Credibility based chance constrained programming for parallel ma-chine scheduling under linear deterioration and learning effects with considering setup times dependent on past se-quences. Journal of Project Management, 8(3), 177–190. https://doi.org/10.5267/j.jpm.2023.3.001
Sarhadi, H., & Ghoseiri, K. (2010). An ant colony system approach for fuzzy traveling salesman problem with time win-dows. International Journal of Advanced Manufacturing Technology, 50(9–12), 1203–1215. https://doi.org/10.1007/s00170-010-2562-1
Schermer, D., Moeini, M., & Wendt, O. (2020). A branch-and-cut approach and alternative formulations for the traveling salesman problem with drone. Networks, 76(2), 164–186. https://doi.org/10.1002/net.21958
Seda, M. (2022). The Assignment Problem and Its Relation to Logistics Problems. Algorithms, 15(10). https://doi.org/10.3390/a15100377
Singh, P., Kamthane, A. R., & Tanksale, A. N. (2021). Metaheuristics for the distance constrained generalized covering traveling salesman problem. OPSEARCH, 58(3), 575–609. https://doi.org/10.1007/s12597-020-00503-3
skoruchi A and mohammadI E. (2022). uncertain portfolio optimization based on dempster-shafer theory. Management Science Letters.
Tong, B., Wang, J., Wang, X., Zhou, F., Mao, X., & Zheng, W. (2022). Optimal Route Planning for Truck–Drone Delivery Using Variable Neighborhood Tabu Search Algorithm. Applied Sciences (Switzerland), 12(1). https://doi.org/10.3390/app12010529
Veenstra, M., Roodbergen, K. J., Vis, I. F. A., & Coelho, L. C. (2017). The pickup and delivery traveling salesman prob-lem with handling costs. European Journal of Operational Research, 257(1), 118–132. https://doi.org/10.1016/j.ejor.2016.07.009
Wang, M., Ma, T., Li, G., Zhai, X., & Qiao, S. (2020). Ant Colony Optimization with an Improved Pheromone Model for Solving MTSP with Capacity and Time Window Constraint. IEEE Access, 8, 106872–106879. https://doi.org/10.1109/ACCESS.2020.3000501
Wang, Y. D., Lu, X. C., & Shen, J. R. (2021). Improved genetic algorithm (VNS-GA) using polar coordinate classification for workload balanced multiple traveling salesman problem (mTSP). Advances in Production Engineering And Man-agement, 16(2), 173–184. https://doi.org/10.14743/APEM2021.2.392
Yang, H., Liang, X., Zhang, Z., Liu, Y., & Abid, M. M. (2020). Statistical modeling of quartiles, standard deviation, and buffer time index of optimal tour in traveling salesman problem and implications for travel time reliability. In Trans-portation Research Record (Vol. 2674, Issue 12, pp. 339–347). SAGE Publications Ltd. https://doi.org/10.1177/0361198120954867
Yu, Y., Lian, F., & Yang, Z. (2021). Pricing of parcel locker service in urban logistics by a TSP model of last-mile deliv-ery. Transport Policy, 114, 206–214. https://doi.org/10.1016/j.tranpol.2021.10.002
Zabavnik, D., & Verbič, M. (2021). Relationship between the financial and the real economy: A bibliometric analysis. In-ternational Review of Economics and Finance, 75, 55–75. https://doi.org/10.1016/j.iref.2021.04.014
Zhang, Y., & Yu, H. (2023). Application of Hybrid Swarming Algorithm on a UAV Regional Logistics Distribution. Bio-mimetics, 8(1), 96. https://doi.org/10.3390/biomimetics8010096
Zhao, L., Bi, X., Li, G., Dong, Z., Xiao, N., & Zhao, A. (2022). Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments. Transportation Research Part E: Logistics and Transporta-tion Review, 168. https://doi.org/10.1016/j.tre.2022.102967
Anily, S., & Bramel, J. (1999). Approximation Algorithms for the Capacitated Traveling Salesman Problem with Pickups and Deliveries. In Logistics (Vol. 46).
Arigliano, A., Ghiani, G., Grieco, A., Guerriero, E., & Plana, I. (2019). Time-dependent asymmetric traveling salesman problem with time windows: Properties and an exact algorithm. Discrete Applied Mathematics, 261, 28–39. https://doi.org/10.1016/j.dam.2018.09.017
Baniasadi, P., Foumani, M., Smith-Miles, K., & Ejov, V. (2020). A transformation technique for the clustered generalized traveling salesman problem with applications to logistics. European Journal of Operational Research, 285(2), 444–457. https://doi.org/10.1016/j.ejor.2020.01.053
Ben Nejma, I., & M’Hallah, R. (2021). A beam search for the equality generalized symmetric traveling salesman problem. RAIRO - Operations Research, 55(5), 3021–3039. https://doi.org/10.1051/ro/2021148
Benitez-Bravo, R., Gomez-González, R., Rivas-García, P., Botello-Álvarez, J. E., Huerta-Guevara, O. F., García-León, A. M., & Rueda-Avellaneda, J. F. (2021). Optimization of municipal solid waste collection routes in a Latin-American context. Journal of the Air and Waste Management Association, 71(11), 1415–1427. https://doi.org/10.1080/10962247.2021.1957040
Cha, H., Kim, D. K., Eun, J., & Cheong, T. (2022). Collaborative traveling salesman problem with ground vehicle as a charger for unmanned aerial vehicle. Transportation Letters. https://doi.org/10.1080/19427867.2022.2082006
Crişan, G. C., Pintea, C. M., & Palade, V. (2017). Emergency management using geographic information systems: appli-cation to the first Romanian traveling salesman problem instance. Knowledge and Information Systems, 50(1), 265–285. https://doi.org/10.1007/s10115-016-0938-8
da Silva, T. T., Chaves, A. A., Yanasse, H. H., & Luna, H. P. L. (2019). The multicommodity traveling salesman problem with priority prizes: a mathematical model and metaheuristics. Computational and Applied Mathematics, 38(4). https://doi.org/10.1007/s40314-019-0976-4
Dalavi, A. M., Gomes, A., & Javed Husain, A. (2022). Bibliometric analysis of nature inspired optimization techniques. Computers and Industrial Engineering, 169. https://doi.org/10.1016/j.cie.2022.108161
de Freitas, J. C., & Penna, P. H. V. (2020). A variable neighborhood search for flying sidekick traveling salesman prob-lem. International Transactions in Operational Research, 27(1), 267–290. https://doi.org/10.1111/itor.12671
Dienstknecht, M., Boysen, N., & Briskorn, D. (2022). The traveling salesman problem with drone resupply. OR Spectrum, 44(4), 1045–1086. https://doi.org/10.1007/s00291-022-00680-1
Du, Y., Fu, S., Lu, C., Zhou, Q., & Li, C. (2021). Simultaneous Pickup and Delivery Traveling Salesman Problem consid-ering the Express Lockers Using Attention Route Planning Network. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/5590758
Eskorouchi, A., Mohammadi, E., & Sajadi, S. J. (n.d.). Robust Portfolio Optimization based on Evidence Theory.
Felipe, A., Ortuño, M. T., & Tirado, G. (2009). New neighborhood structures for the double traveling salesman problem with multiple stacks. TOP, 17(1), 190–213. https://doi.org/10.1007/s11750-009-0080-9
Felipe, A., Ortuño, M. T., & Tirado, G. (2012). An adapted heuristic approach for a clustered traveling salesman problem with loading constraints. 4OR, 10(3), 245–265. https://doi.org/10.1007/s10288-012-0207-y
Ghanbari, H., Larni Fooeik, A., Eskorouchi, A., & Mohammadi, E. (2022). Investigating the effect of US dollar, gold and oil prices on the stock market. Journal of Future Sustainability, 2, 97–104. https://doi.org/10.5267/j.ijdns.2022.9.009
Ghanbari, H., Safari, M., Ghousi, R., Mohammadi, E., & Nakharutai, N. (2023). Bibliometric analysis of risk measures for portfolio optimization. Accounting, 9(2), 95–108. https://doi.org/10.5267/j.ac.2022.12.003
Gomes, D. E., Iglésias, M. I. D., Proença, A. P., Lima, T. M., & Gaspar, P. D. (2021). Applying a genetic algorithm to a m-tsp: Case study of a decision support system for optimizing a beverage logistics vehicles routing problem. Electronics (Switzerland), 10(18). https://doi.org/10.3390/electronics10182298
Gu, L., & Liang, G. (2022). The Effect of Bank Financing under Supply Chain-to-Chain Competition. Mathematical Prob-lems in Engineering, 2022. https://doi.org/10.1155/2022/8575338
Ha, Q. M., Deville, Y., Pham, Q. D., & Hà, M. H. (2018). On the min-cost Traveling Salesman Problem with Drone. Transportation Research Part C: Emerging Technologies, 86, 597–621. https://doi.org/10.1016/j.trc.2017.11.015
Hansknecht, C., Joormann, I., & Stiller, S. (2021). Dynamic shortest paths methods for the time-dependent tsp. Algo-rithms, 14(1). https://doi.org/10.3390/a14010021
Karimi, M. H., Mohammadi, E., Jafari, H., Ghaeli, M. R., & Eskoruchi, A. (2022). A robust linear model for the maximum expected coverage location problem considering the relative coverage. Journal of Future Sustainability, 2(2), 39–48. https://doi.org/10.5267/j.jfs.2022.9.002
Kimms, A., & Kozeletskyi, I. (2016). Core-based cost allocation in the cooperative traveling salesman problem. European Journal of Operational Research, 248(3), 910–916. https://doi.org/10.1016/j.ejor.2015.08.002
Kota, L., & Jarmai, K. (2015). Mathematical modeling of multiple tour multiple traveling salesman problem using evolu-tionary programming. Applied Mathematical Modelling, 39(12), 3410–3433. https://doi.org/10.1016/j.apm.2014.11.043
Kundu, A., Escobar, R. G., & Matis, T. I. (2022). An efficient routing heuristic for a drone-assisted delivery problem. IMA Journal of Management Mathematics, 33(4), 583–601. https://doi.org/10.1093/imaman/dpab039
Larni Fooeik, A., Ghanbari, H., Bagheriyan, M., & Mohammadi, E. (2022). Analyzing the effects of global oil, gold and palladium markets: Evidence from the Nasdaq com-posite index. Journal of Future Sustainability, 2, 105–112. https://doi.org/10.5267/j.ijdns.2022.9.010
Li, M., Zhao, Y., Xiong, X., & Ma, Y. (2020). Comprehensive optimization of the synchronous delivery network in the model of OTMD for traveling salesman problem with drone. Journal of Intelligent and Fuzzy Systems, 39(5), 7505–7519. https://doi.org/10.3233/JIFS-200818
Luo, Z., Poon, M., Zhang, Z., Liu, Z., & Lim, A. (2021). The Multi-visit Traveling Salesman Problem with Multi-Drones. Transportation Research Part C: Emerging Technologies, 128. https://doi.org/10.1016/j.trc.2021.103172
Malaguti, E., Martello, S., & Santini, A. (2018). The traveling salesman problem with pickups, deliveries, and draft limits. Omega (United Kingdom), 74, 50–58. https://doi.org/10.1016/j.omega.2017.01.005
Marín-Rodríguez, N. J., González-Ruiz, J. D., & Botero Botero, S. (2022). Dynamic Co-Movements among Oil Prices and Financial Assets: A Scientometric Analysis. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912796
Mbiadou Saleu, R. G., Deroussi, L., Feillet, D., Grangeon, N., & Quilliot, A. (2018). An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem. Networks, 72(4), 459–474. https://doi.org/10.1002/net.21846
Meng, X., Li, J., Zhou, M., & Dai, X. (2022). A Dynamic Colored Traveling Salesman Problem With Varying Edge Weights. IEEE Transactions on Intelligent Transportation Systems, 23(8), 13549–13558. https://doi.org/10.1109/TITS.2021.3125721
Montero, A., Méndez-Díaz, I., & Miranda-Bront, J. J. (2017). An integer programming approach for the time-dependent traveling salesman problem with time windows. Computers and Operations Research, 88, 280–289. https://doi.org/10.1016/j.cor.2017.06.026
Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted par-cel delivery. Transportation Research Part C: Emerging Technologies, 54, 86–109. https://doi.org/10.1016/j.trc.2015.03.005
Murray, C. C., & Raj, R. (2020). The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones. Transportation Research Part C: Emerging Technologies, 110, 368–398. https://doi.org/10.1016/j.trc.2019.11.003
Ochelska-Mierzejewska, J., Poniszewska-Marańda, A., & Marańda, W. (2021). Selected genetic algorithms for vehicle routing problem solving. Electronics (Switzerland), 10(24). https://doi.org/10.3390/electronics10243147
Pina-Pardo, J. C., Silva, D. F., & Smith, A. E. (2021). The traveling salesman problem with release dates and drone resup-ply. Computers and Operations Research, 129. https://doi.org/10.1016/j.cor.2020.105170
Rajabi, M. S., Beigi, P., & Aghakhani, S. (n.d.). Drone Delivery Systems and Energy Management: A Review and Future Trends.
Roberti, R., & Wen, M. (2016). The Electric Traveling Salesman Problem with Time Windows. Transportation Research Part E: Logistics and Transportation Review, 89, 32–52. https://doi.org/10.1016/j.tre.2016.01.010
Ruan, M., Shen, C., Tang, J., Qi, C., & Qiu, S. (2021). A double traveling salesman problem with three-dimensional load-ing constraints for bulky item delivery. IEEE Access, 9, 13052–13063. https://doi.org/10.1109/ACCESS.2021.3051248
Sabripoor, A., Amirsahami, A., & Ghousi, R. (2023). Credibility based chance constrained programming for parallel ma-chine scheduling under linear deterioration and learning effects with considering setup times dependent on past se-quences. Journal of Project Management, 8(3), 177–190. https://doi.org/10.5267/j.jpm.2023.3.001
Sarhadi, H., & Ghoseiri, K. (2010). An ant colony system approach for fuzzy traveling salesman problem with time win-dows. International Journal of Advanced Manufacturing Technology, 50(9–12), 1203–1215. https://doi.org/10.1007/s00170-010-2562-1
Schermer, D., Moeini, M., & Wendt, O. (2020). A branch-and-cut approach and alternative formulations for the traveling salesman problem with drone. Networks, 76(2), 164–186. https://doi.org/10.1002/net.21958
Seda, M. (2022). The Assignment Problem and Its Relation to Logistics Problems. Algorithms, 15(10). https://doi.org/10.3390/a15100377
Singh, P., Kamthane, A. R., & Tanksale, A. N. (2021). Metaheuristics for the distance constrained generalized covering traveling salesman problem. OPSEARCH, 58(3), 575–609. https://doi.org/10.1007/s12597-020-00503-3
skoruchi A and mohammadI E. (2022). uncertain portfolio optimization based on dempster-shafer theory. Management Science Letters.
Tong, B., Wang, J., Wang, X., Zhou, F., Mao, X., & Zheng, W. (2022). Optimal Route Planning for Truck–Drone Delivery Using Variable Neighborhood Tabu Search Algorithm. Applied Sciences (Switzerland), 12(1). https://doi.org/10.3390/app12010529
Veenstra, M., Roodbergen, K. J., Vis, I. F. A., & Coelho, L. C. (2017). The pickup and delivery traveling salesman prob-lem with handling costs. European Journal of Operational Research, 257(1), 118–132. https://doi.org/10.1016/j.ejor.2016.07.009
Wang, M., Ma, T., Li, G., Zhai, X., & Qiao, S. (2020). Ant Colony Optimization with an Improved Pheromone Model for Solving MTSP with Capacity and Time Window Constraint. IEEE Access, 8, 106872–106879. https://doi.org/10.1109/ACCESS.2020.3000501
Wang, Y. D., Lu, X. C., & Shen, J. R. (2021). Improved genetic algorithm (VNS-GA) using polar coordinate classification for workload balanced multiple traveling salesman problem (mTSP). Advances in Production Engineering And Man-agement, 16(2), 173–184. https://doi.org/10.14743/APEM2021.2.392
Yang, H., Liang, X., Zhang, Z., Liu, Y., & Abid, M. M. (2020). Statistical modeling of quartiles, standard deviation, and buffer time index of optimal tour in traveling salesman problem and implications for travel time reliability. In Trans-portation Research Record (Vol. 2674, Issue 12, pp. 339–347). SAGE Publications Ltd. https://doi.org/10.1177/0361198120954867
Yu, Y., Lian, F., & Yang, Z. (2021). Pricing of parcel locker service in urban logistics by a TSP model of last-mile deliv-ery. Transport Policy, 114, 206–214. https://doi.org/10.1016/j.tranpol.2021.10.002
Zabavnik, D., & Verbič, M. (2021). Relationship between the financial and the real economy: A bibliometric analysis. In-ternational Review of Economics and Finance, 75, 55–75. https://doi.org/10.1016/j.iref.2021.04.014
Zhang, Y., & Yu, H. (2023). Application of Hybrid Swarming Algorithm on a UAV Regional Logistics Distribution. Bio-mimetics, 8(1), 96. https://doi.org/10.3390/biomimetics8010096
Zhao, L., Bi, X., Li, G., Dong, Z., Xiao, N., & Zhao, A. (2022). Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments. Transportation Research Part E: Logistics and Transporta-tion Review, 168. https://doi.org/10.1016/j.tre.2022.102967