How to cite this paper
Angra, S., Chanda, A & Chawla, V. (2018). Comparison and evaluation of job selection dispatching rules for integrated scheduling of multi-load automatic guided vehicles serving in variable sized flexible manufacturing system layouts: A simulation study.Management Science Letters , 8(4), 187-200.
Refrences
Azimi, P., Haleh, H., & Alidoost, M. (2010). The selection of the best control rule for a multiple load AGV system using simulation and fuzzy MADM in a flexible manufacturing system. Modelling and Simulation in Engineering, 2010, 7.
Bilge, U., & Tanchoco, J. M. (1997). AGV systems with multi-load carriers: basic issues and potential benefits. Journal of Manufacturing Systems, 16(3), 159.
Bottani, E., Centobelli, P., Cerchione, R., Gaudio, L., & Murino, T. (2017). Solving work center loading problem of flexible manufacturing systems using a modified discrete firefly algorithm. International Journal of Industrial Engineering Computations, 8(3), 363-372.
Chawla, V., Chanda, A., & Angra, S. (2018 a). Scheduling of multi-load AGVs in FMS by modified memetic particle swarm optimization algorithm. Journal of Project Management, 3(1), 39-54.
Chawla, V., Chanda, A., & Angra, S. (2018 b). Automatic guided vehicles fleet size optimization for flexible manufactur-ing system by grey wolf optimization algorithm. Management Science Letters, 8(2), 79-90.
Chawla, V.K., Chanda, A., & Angra, S. (2018 c). The sustainable project management: A review and future possibilities. Journal of Project Management, DOI: 10.5267/j.jpm.2018.2.001
Chawla, V.K., Chanda, A., & Angra, S. (2018 d). A Clonal Selection Algorithm for Minimizing Distance Travel & Back Tracking of Automatic Guided Vehicles in Flexible Manufacturing System. Journal of The Institution of Engineers (India): Series C, DOI: 10.1007/s40032-018-0447-5.
Cheng, T. C. E. (1987). A simulation study of automated guided vehicle dispatching. Robotics and Computer-Integrated Manufacturing, 3(3), 335-338.
De Guzman, M. C., Prabhu, N., & Tanchoco, J. M. A. (1997). Complexity of the AGV shortest path and single-loop guide path layout problems. International Journal of Production Research, 35(8), 2083-2092.
Hammond, G. (1986). AGVS at work: automated guided vehicle systems. Springer Verlag.
Hao, G., Shang, J. S., & Vargas, L. G. (1996). A neural network model for the free-ranging AGV route-planning problem. Journal of Intelligent Manufacturing, 7(3), 217-227.
Ho, Y. C., & Shaw, H. C. (2000). The performance of multiple-load AGV systems under different guide path configura-tions and vehicle control strategies. International Journal of Manufacturing Technology and Management, 1(2-3), 218-231.
Ho, Y. C., & Liu, H. C. (2009). The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs. Journal of Manufacturing Systems, 28(1), 1-10.
Ho, Y. C., Liu, H. C., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching prob-lem and the load-selection problem of multiple-load AGVs. Journal of Manufacturing Systems, 31(3), 288-300.
Kelton, W. D. (2002). Simulation with ARENA. McGraw-hill.
Kim, C. W., & Tanchoco, J. M. (1991). Conflict-free shortest-time bidirectional AGV routeing. The International Journal of Production Research, 29(12), 2377-2391.
Kumar, V. Chawla, Chanda, A., & Angra, S. (2018). Evaluation of Hybrid Dispatching Rules for Simultaneous Schedul-ing of AGVs in FMS. 1st International Conference on New Frontiers in Engineering, Science & Technology, New Delhi, India, January 8-12, 2018, 105-112
Langevin, A., Lauzon, D., & Riopel, D. (1996). Dispatching, routing, and scheduling of two automated guided vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing Systems, 8(3), 247-262.
Lee, J., Tangjarukij, M., & Zhu, Z. (1996). Load selection of automated guided vehicles in flexible manufacturing sys-tems. International Journal of Production Research, 34(12), 3383-3400.
Lin, L., Shinn, S. W., Gen, M., & Hwang, H. (2006). Network model and effective evolutionary approach for AGV dis-patching in manufacturing system. Journal of Intelligent Manufacturing, 17(4), 465-477.
Moghadam, B. F., Sadjadi, S. J., & Seyedhosseini, S. M. (2010). An empirical analysis on robust vehicle routing problem: a case study on drug industry. International Journal of Logistics Systems and Management, 7(4), 507-518.
Moghaddam, B. F., Ruiz, R., & Sadjadi, S. J. (2012). Vehicle routing problem with uncertain demands: An advanced par-ticle swarm algorithm. Computers & Industrial Engineering, 62(1), 306-317.
Rajotia, S., Shanker, K., & Batra, J. L. (1998). A semi-dynamic time window constrained routeing strategy in an AGV sys-tem. International Journal of Production Research, 36(1), 35-50.
Sadrabadi, M. R., & Sadjadi, S. J. (2009). A new approach to solve multiple objective programming problems. Interna-tional Journal of Industrial Engineering & Production Research, 20(1), 41-51.
Singh, R., & Khan, B. (2016). Meta-hierarchical-heuristic-mathematical-model of loading problems in flexible manufacturing system for development of an intelligent approach. International Journal of Industrial Engineering Computations, 7(2), 177-190.
Taghaboni-Dutta, F., & Tanchoco, J. M. A. (1995). Comparison of dynamic routeing techniques for automated guided vehicle system. International Journal of Production Research, 33(10), 2653-2669.
Tanchoco, J. M. A. and Co, C. G. (1994), Real-Time Control Strategies for Multiple-Load AGVs, Material Flow Systems in Manufacturing, edited by J. M. A. Tanchoco, (ed), Chapman & Hall, London.
Um, I., Cheon, H., & Lee, H. (2009). The simulation design and analysis of a flexible manufacturing system with automated guided vehicle system. Journal of Manufacturing Systems, 28(4), 115-122.
Wang, Y. C., Chen, T., Chiang, H., & Pan, H. C. (2016). A simulation analysis of part launching and order collection deci-sions for a flexible manufacturing system. Simulation Modelling Practice and Theory, 69, 80-91.
Yim, D. S., & Linnt, R. J. (1993). Push and pull rules for dispatching automated guided vehicles in a flexible manufactur-ing system. The International Journal of Production Research, 31(1), 43-57.
Bilge, U., & Tanchoco, J. M. (1997). AGV systems with multi-load carriers: basic issues and potential benefits. Journal of Manufacturing Systems, 16(3), 159.
Bottani, E., Centobelli, P., Cerchione, R., Gaudio, L., & Murino, T. (2017). Solving work center loading problem of flexible manufacturing systems using a modified discrete firefly algorithm. International Journal of Industrial Engineering Computations, 8(3), 363-372.
Chawla, V., Chanda, A., & Angra, S. (2018 a). Scheduling of multi-load AGVs in FMS by modified memetic particle swarm optimization algorithm. Journal of Project Management, 3(1), 39-54.
Chawla, V., Chanda, A., & Angra, S. (2018 b). Automatic guided vehicles fleet size optimization for flexible manufactur-ing system by grey wolf optimization algorithm. Management Science Letters, 8(2), 79-90.
Chawla, V.K., Chanda, A., & Angra, S. (2018 c). The sustainable project management: A review and future possibilities. Journal of Project Management, DOI: 10.5267/j.jpm.2018.2.001
Chawla, V.K., Chanda, A., & Angra, S. (2018 d). A Clonal Selection Algorithm for Minimizing Distance Travel & Back Tracking of Automatic Guided Vehicles in Flexible Manufacturing System. Journal of The Institution of Engineers (India): Series C, DOI: 10.1007/s40032-018-0447-5.
Cheng, T. C. E. (1987). A simulation study of automated guided vehicle dispatching. Robotics and Computer-Integrated Manufacturing, 3(3), 335-338.
De Guzman, M. C., Prabhu, N., & Tanchoco, J. M. A. (1997). Complexity of the AGV shortest path and single-loop guide path layout problems. International Journal of Production Research, 35(8), 2083-2092.
Hammond, G. (1986). AGVS at work: automated guided vehicle systems. Springer Verlag.
Hao, G., Shang, J. S., & Vargas, L. G. (1996). A neural network model for the free-ranging AGV route-planning problem. Journal of Intelligent Manufacturing, 7(3), 217-227.
Ho, Y. C., & Shaw, H. C. (2000). The performance of multiple-load AGV systems under different guide path configura-tions and vehicle control strategies. International Journal of Manufacturing Technology and Management, 1(2-3), 218-231.
Ho, Y. C., & Liu, H. C. (2009). The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs. Journal of Manufacturing Systems, 28(1), 1-10.
Ho, Y. C., Liu, H. C., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching prob-lem and the load-selection problem of multiple-load AGVs. Journal of Manufacturing Systems, 31(3), 288-300.
Kelton, W. D. (2002). Simulation with ARENA. McGraw-hill.
Kim, C. W., & Tanchoco, J. M. (1991). Conflict-free shortest-time bidirectional AGV routeing. The International Journal of Production Research, 29(12), 2377-2391.
Kumar, V. Chawla, Chanda, A., & Angra, S. (2018). Evaluation of Hybrid Dispatching Rules for Simultaneous Schedul-ing of AGVs in FMS. 1st International Conference on New Frontiers in Engineering, Science & Technology, New Delhi, India, January 8-12, 2018, 105-112
Langevin, A., Lauzon, D., & Riopel, D. (1996). Dispatching, routing, and scheduling of two automated guided vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing Systems, 8(3), 247-262.
Lee, J., Tangjarukij, M., & Zhu, Z. (1996). Load selection of automated guided vehicles in flexible manufacturing sys-tems. International Journal of Production Research, 34(12), 3383-3400.
Lin, L., Shinn, S. W., Gen, M., & Hwang, H. (2006). Network model and effective evolutionary approach for AGV dis-patching in manufacturing system. Journal of Intelligent Manufacturing, 17(4), 465-477.
Moghadam, B. F., Sadjadi, S. J., & Seyedhosseini, S. M. (2010). An empirical analysis on robust vehicle routing problem: a case study on drug industry. International Journal of Logistics Systems and Management, 7(4), 507-518.
Moghaddam, B. F., Ruiz, R., & Sadjadi, S. J. (2012). Vehicle routing problem with uncertain demands: An advanced par-ticle swarm algorithm. Computers & Industrial Engineering, 62(1), 306-317.
Rajotia, S., Shanker, K., & Batra, J. L. (1998). A semi-dynamic time window constrained routeing strategy in an AGV sys-tem. International Journal of Production Research, 36(1), 35-50.
Sadrabadi, M. R., & Sadjadi, S. J. (2009). A new approach to solve multiple objective programming problems. Interna-tional Journal of Industrial Engineering & Production Research, 20(1), 41-51.
Singh, R., & Khan, B. (2016). Meta-hierarchical-heuristic-mathematical-model of loading problems in flexible manufacturing system for development of an intelligent approach. International Journal of Industrial Engineering Computations, 7(2), 177-190.
Taghaboni-Dutta, F., & Tanchoco, J. M. A. (1995). Comparison of dynamic routeing techniques for automated guided vehicle system. International Journal of Production Research, 33(10), 2653-2669.
Tanchoco, J. M. A. and Co, C. G. (1994), Real-Time Control Strategies for Multiple-Load AGVs, Material Flow Systems in Manufacturing, edited by J. M. A. Tanchoco, (ed), Chapman & Hall, London.
Um, I., Cheon, H., & Lee, H. (2009). The simulation design and analysis of a flexible manufacturing system with automated guided vehicle system. Journal of Manufacturing Systems, 28(4), 115-122.
Wang, Y. C., Chen, T., Chiang, H., & Pan, H. C. (2016). A simulation analysis of part launching and order collection deci-sions for a flexible manufacturing system. Simulation Modelling Practice and Theory, 69, 80-91.
Yim, D. S., & Linnt, R. J. (1993). Push and pull rules for dispatching automated guided vehicles in a flexible manufactur-ing system. The International Journal of Production Research, 31(1), 43-57.