How to cite this paper
Bozorgi, N & Abedzadeh, M. (2011). A multiple criteria facility layout problem using data envelopment analysis.Management Science Letters , 1(3), 363-370.
Refrences
Aiello, G., Enea, M., & Galante, G. (2006). A multi-objective approach to facility layout problem by genetic search algorithm and ELECTERE method. Robotics and Computer-Integrated Manufacturing, 22,447–455.
Amin, Gh R., & Toloo, M. (2007). Finding the most eficient DMUs in DEA: An improved integrated model. Computers & Industrial Engineering, 52, 71–77.
Armour, G. C., & Buffa, E. S. (1963). A heuristic algorithm and simulation approach to relative location of facilities. Management Science, 9, 294-309.
Buffa, E. S., Armour, G. C., & Vollman, T. E. (1964). Allocating facilities with CRAFT, Harvard Business Review, 42, 136-158.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiency in data envelopment analysis. Management Science, 30, 1078–1092.
Bashiri, M., & Dehghan, E. (2010). Optimizing a multiple criteria dynamic layout problem using a simultaneous data envelopment analysis modeling Optimizing a DLP using DEA. International Journal on Computer Science and Engineering, 2(1), 28-35.
Bazaraa, M. S. (1975). Computerized layout design: a branch and bound approach. AIIE Transactions, 7, 432-438.
Burkard, R. E., & Rendl, F. (1984). A thermodynamically motivated simulation procedure for ombinatorial optimization problems. European Journal of Operational Research, 17, 169-174.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2, 429–444.
Chiang, W., & Chiang, C. (1998). Intelligent local search strategies for solving acility layout problems with the quadratic ssignment problem ormulation. European Journal of Operational Research, 106, 457-488.
Chiang, W., & Kouvelis, P. (1996). An improved Tabu search heuristic for solving acility layout esign problems. International Journal of Production Research, 34(9), 2565-2585.
Chwif, L., Barretto, M. R. P., & Moscato, L. A. (1998). A Solution to the Facility Layout Problem Using Simulated Annealing. Computer In Industry, 36, 125-132.
Cooper, W. W., Seiford, L., & Tone, M. K. (2006). Introduction to Data Envelopment Analysis and its uses with DEA-Solver software and references. Springer.
Drezner, Z. (2008). Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem. Computers and Operations Research, 35, 717-736.
Dunker, T., Radons, G., & Westkamper, E. (2003). A coevolutionary algorithm for a facility layout problem. International. Journal of Production Research, 15, 3479–3500.
Ertay, T., Ruan, Da., & Tuzkaya, U. R. (2006). Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Information Sciences, 176, 237–262.
Gilmore, P. C. (1962). Optimal and suboptimal algorithms for the quadratic assignment problem. Journal of the Society for Industrial and Applied Mathematics, 10, 305-313.
Ghosh, T., Sengupta, S., Chattopadhyay, M., & Dan, P. K. (2011). Meta-heuristics in cellular manufacturing: A state-of-the-art review. International Journal of Industrial Engineering Computations, 2(1), 87-122.
Hakobyan, A. (2008). Heuristic for Dynamic Facility Layout Problem with Unequal Area Problem. PhD Dissertation, Morganton, West Virginia.
Hassan, M. M. D., Hogg, G. L., & Smith, D. R. (1986). SHAPE: a construction algorithm for area placement evaluation. International Journal of Production Research, 24, 1283-1295.
Jabal-Ameli, M. S., Aryanezhad, M. B., & Ghaffari-Nasab, N. (2011). A variable neighborhood descent based heuristic to solve the capacitated location-routing problem. International Journal of Industrial Engineering Computations, 2(1), 141-154.
Kochhar, J. S., Foster, B. T., & Heragu, S. S. (1997). A Genetic Algorithm for the Unequal Area Facility Layout Problem. Computers and Operations Research, 25, 583-594.
Komarudin, & Wong, K.Y. (2010). Applying Ant System for Solving Unequal Area Facility Layout Problems. European Journal of Operational Research, 202, 730-746.
Koopmans, T. C., & Beckmann, M. J. (1957). Assignment problems and the location of economic activities. Econometrica, 25, 53-76.
Kuppusamy, S. (2001). Simulated Annealing Heuristic for the Dynamic Facility Layout Problem. MS Dissertation, Morganton, West Virginia.
Lacksonen, T. A., & Enscore E. E. (1993). Quadratic assignment algorithms for the dynamic layout problems. International Journal of Production Research, 31, 503-517.
Li, T., & Mashford J. (1990). A parallel genetic algorithm for quadratic assignment Proceedings of the ISMM. International Conference Parallel and Distributed Computing and Systems, 391-394.
Liu, W. H. (2005). Tabu Search Heuristic for the Dynamic Facility Layout problem. MS Dissertation, Morganton, West Virginia.
Mckendal, A. R., Shang, J., & Kuppusamy, S. (2006). Simulated annealing heuristics for the dynamic facility layout problem. Computers & Operations Research, 33, 2431–2444.
Mir, M., & Imam, M. H. (2001). A hybrid optimization pproach or layout esign of unequal rea acilities. Computers & Operations Research, 39, 49-63.
Norman, M. G., & Moscato, P. (1989). A competitive and cooperative approach to complex combinatorial search. Caltech Concurrent Computation Program, Report 826.
Scholz, D. A., Petrick, & Domschke, W. (2009). A slicing tree and tabu search ased heuristic for the unequal rea acility layout problem. European Journal of Operational Research, 197, 166-178.
Skorin-Kapov, J. (1990). Tabu search pplied to the quadratic ssignment problem. ORSA Journal on Computing, 2, 33-45.
Tam, K. Y. (1992). Genetic algorithms function optimization and facility layout design. European Journal of Operational Research 63: 322-346.
Tam, K. Y. (1992). A simulated annealing algorithm for allocating space to manufacturing cells. International Journal of Production Research, 30: 63-87.
Tate, D. E., & Smith, A. E. (1995). A enetic pproach to the quadratic ssignment problem. Computers and Operations Research, 22, 73-83.
Tompkins, J. A.,White, J. A., Bozer, Y. A., Frazelle, E. H., Tanchoco, J. M. A., & Trevino, J. (1996). Facilities planning. New York: Wiley; 137–285.
Tong, X. (1991). SECOT: a sequential construction technique for facility design, Unpublished Doctoral Dissertation, University of Pittsburgh, Pittsburgh, PA, USA.
Wang, M. J., Hu, M. H.,& Ku, M. Y. (2005). A solution to the unequal rea acilities layout problem by enetic lgorithm. Computers In Industry, 56, 207-220.
Wilhelm, M. R., Ward, T. L. (1987). Solving the quadratic ssignment problem by simulated nnealing. IIE Transactions, 19, 107-119.
Yang, T., & Kuo, Ch. (2003). A hierarchical AHP/DEA methodology for the facilities layout design problem. European Journal of Operational Research, 147, 128–136.
Amin, Gh R., & Toloo, M. (2007). Finding the most eficient DMUs in DEA: An improved integrated model. Computers & Industrial Engineering, 52, 71–77.
Armour, G. C., & Buffa, E. S. (1963). A heuristic algorithm and simulation approach to relative location of facilities. Management Science, 9, 294-309.
Buffa, E. S., Armour, G. C., & Vollman, T. E. (1964). Allocating facilities with CRAFT, Harvard Business Review, 42, 136-158.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiency in data envelopment analysis. Management Science, 30, 1078–1092.
Bashiri, M., & Dehghan, E. (2010). Optimizing a multiple criteria dynamic layout problem using a simultaneous data envelopment analysis modeling Optimizing a DLP using DEA. International Journal on Computer Science and Engineering, 2(1), 28-35.
Bazaraa, M. S. (1975). Computerized layout design: a branch and bound approach. AIIE Transactions, 7, 432-438.
Burkard, R. E., & Rendl, F. (1984). A thermodynamically motivated simulation procedure for ombinatorial optimization problems. European Journal of Operational Research, 17, 169-174.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2, 429–444.
Chiang, W., & Chiang, C. (1998). Intelligent local search strategies for solving acility layout problems with the quadratic ssignment problem ormulation. European Journal of Operational Research, 106, 457-488.
Chiang, W., & Kouvelis, P. (1996). An improved Tabu search heuristic for solving acility layout esign problems. International Journal of Production Research, 34(9), 2565-2585.
Chwif, L., Barretto, M. R. P., & Moscato, L. A. (1998). A Solution to the Facility Layout Problem Using Simulated Annealing. Computer In Industry, 36, 125-132.
Cooper, W. W., Seiford, L., & Tone, M. K. (2006). Introduction to Data Envelopment Analysis and its uses with DEA-Solver software and references. Springer.
Drezner, Z. (2008). Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem. Computers and Operations Research, 35, 717-736.
Dunker, T., Radons, G., & Westkamper, E. (2003). A coevolutionary algorithm for a facility layout problem. International. Journal of Production Research, 15, 3479–3500.
Ertay, T., Ruan, Da., & Tuzkaya, U. R. (2006). Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Information Sciences, 176, 237–262.
Gilmore, P. C. (1962). Optimal and suboptimal algorithms for the quadratic assignment problem. Journal of the Society for Industrial and Applied Mathematics, 10, 305-313.
Ghosh, T., Sengupta, S., Chattopadhyay, M., & Dan, P. K. (2011). Meta-heuristics in cellular manufacturing: A state-of-the-art review. International Journal of Industrial Engineering Computations, 2(1), 87-122.
Hakobyan, A. (2008). Heuristic for Dynamic Facility Layout Problem with Unequal Area Problem. PhD Dissertation, Morganton, West Virginia.
Hassan, M. M. D., Hogg, G. L., & Smith, D. R. (1986). SHAPE: a construction algorithm for area placement evaluation. International Journal of Production Research, 24, 1283-1295.
Jabal-Ameli, M. S., Aryanezhad, M. B., & Ghaffari-Nasab, N. (2011). A variable neighborhood descent based heuristic to solve the capacitated location-routing problem. International Journal of Industrial Engineering Computations, 2(1), 141-154.
Kochhar, J. S., Foster, B. T., & Heragu, S. S. (1997). A Genetic Algorithm for the Unequal Area Facility Layout Problem. Computers and Operations Research, 25, 583-594.
Komarudin, & Wong, K.Y. (2010). Applying Ant System for Solving Unequal Area Facility Layout Problems. European Journal of Operational Research, 202, 730-746.
Koopmans, T. C., & Beckmann, M. J. (1957). Assignment problems and the location of economic activities. Econometrica, 25, 53-76.
Kuppusamy, S. (2001). Simulated Annealing Heuristic for the Dynamic Facility Layout Problem. MS Dissertation, Morganton, West Virginia.
Lacksonen, T. A., & Enscore E. E. (1993). Quadratic assignment algorithms for the dynamic layout problems. International Journal of Production Research, 31, 503-517.
Li, T., & Mashford J. (1990). A parallel genetic algorithm for quadratic assignment Proceedings of the ISMM. International Conference Parallel and Distributed Computing and Systems, 391-394.
Liu, W. H. (2005). Tabu Search Heuristic for the Dynamic Facility Layout problem. MS Dissertation, Morganton, West Virginia.
Mckendal, A. R., Shang, J., & Kuppusamy, S. (2006). Simulated annealing heuristics for the dynamic facility layout problem. Computers & Operations Research, 33, 2431–2444.
Mir, M., & Imam, M. H. (2001). A hybrid optimization pproach or layout esign of unequal rea acilities. Computers & Operations Research, 39, 49-63.
Norman, M. G., & Moscato, P. (1989). A competitive and cooperative approach to complex combinatorial search. Caltech Concurrent Computation Program, Report 826.
Scholz, D. A., Petrick, & Domschke, W. (2009). A slicing tree and tabu search ased heuristic for the unequal rea acility layout problem. European Journal of Operational Research, 197, 166-178.
Skorin-Kapov, J. (1990). Tabu search pplied to the quadratic ssignment problem. ORSA Journal on Computing, 2, 33-45.
Tam, K. Y. (1992). Genetic algorithms function optimization and facility layout design. European Journal of Operational Research 63: 322-346.
Tam, K. Y. (1992). A simulated annealing algorithm for allocating space to manufacturing cells. International Journal of Production Research, 30: 63-87.
Tate, D. E., & Smith, A. E. (1995). A enetic pproach to the quadratic ssignment problem. Computers and Operations Research, 22, 73-83.
Tompkins, J. A.,White, J. A., Bozer, Y. A., Frazelle, E. H., Tanchoco, J. M. A., & Trevino, J. (1996). Facilities planning. New York: Wiley; 137–285.
Tong, X. (1991). SECOT: a sequential construction technique for facility design, Unpublished Doctoral Dissertation, University of Pittsburgh, Pittsburgh, PA, USA.
Wang, M. J., Hu, M. H.,& Ku, M. Y. (2005). A solution to the unequal rea acilities layout problem by enetic lgorithm. Computers In Industry, 56, 207-220.
Wilhelm, M. R., Ward, T. L. (1987). Solving the quadratic ssignment problem by simulated nnealing. IIE Transactions, 19, 107-119.
Yang, T., & Kuo, Ch. (2003). A hierarchical AHP/DEA methodology for the facilities layout design problem. European Journal of Operational Research, 147, 128–136.