How to cite this paper
Guevara-Guevara, A., Gómez-Fuentes, V., Posos-Rodríguez, L., Remolina-Gómez, N & González-Neira, E. (2022). Earliness/tardiness minimization in a no-wait flow shop with sequence-dependent setup times.Journal of Project Management, 7(3), 177-190.
Refrences
Aldowaisan, T., & Allahverdi, A. (2003). New heuristics for no-wait flowshops to minimize makespan. Computers and Operations Research, 30(8), 1219–1231. https://doi.org/10.1016/S0305-0548(02)00068-0
Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Jour-nal of Operational Research, 246(2), 345–378. https://doi.org/10.1016/j.ejor.2015.04.004
Allahverdi, A., & Soroush, H. M. (2008). The significance of reducing setup times/setup costs. European Journal of Op-erational Research, 187(3), 978–984. https://doi.org/10.1016/j.ejor.2006.09.010
Bertolissi, E. (2000). Heuristic algorithm for scheduling in the no-wait flow-shop. Journal of Materials Processing Technology, 107(1–3), 459–465. https://doi.org/10.1016/S0924-0136(00)00720-2
Bewoor, L. A., Chandra Prakash, V., & Sapkal, S. U. (2017). Evolutionary hybrid particle swarm optimization algorithm for solving NP-hard no-wait flow shop scheduling problems. Algorithms, 10(4), 1–17. https://doi.org/10.3390/a10040121
Bonney, M. C., & Gundry, S. W. (1977). Solutions to the constrained flowshop sequencing problem. Operational Re-search Quarterly, 28(3), 663–670.
Brunner, E., Dette, H., & Munk, A. (1997). Box-Type Approximations in Nonparametric Factorial Designs. Journal of the American Statistical Association, 92(440), 1494–1502. https://doi.org/10.1080/01621459.1997.10473671
Cheng, C. Y., Ying, K. C., Li, S. F., & Hsieh, Y. C. (2019). Minimizing makespan in mixed no-wait flowshops with se-quence-dependent setup times. Computers and Industrial Engineering, 130(December 2018), 338–347. https://doi.org/10.1016/j.cie.2019.02.041
Ding, J.-Y., Song, S., Gupta, J. N. D., Zhang, R., Chiong, R., & Wu, C. (2015). An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604–613. https://doi.org/10.1016/j.asoc.2015.02.006
Du, K.-L., & Swamy, M. N. S. (2016). Search and Optimization by Metaheuristics. In Search and Optimization by Me-taheuristics. https://doi.org/10.1007/978-3-319-41192-7
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP- completeness. New York: Freeman.
Gilmore, P. C., & Gomory, R. E. (1964). Sequencing a one state - variable machine: A solvable case of the traveling salesman problem. IBM Watson Research Center, Yorktown Heights, New York, 6(3), 30–32. https://doi.org/10.1063/1.3061193
Grabowski, J., & Pempera, J. (2005). Some local search algorithms for no-wait flow-shop problem with makespan crite-rion. Computers & Operations Research, 32(8), 2197–2212. https://doi.org/10.1016/j.cor.2004.02.009
Gupta, J. N. D., & Stafford, E. F. (2006). Flowshop scheduling research after five decades. European Journal of Opera-tional Research, 169(3), 699–711. https://doi.org/10.1016/j.ejor.2005.02.001
Joanna Józefowska. (2007). Just-In-Time Scheduling: Models and Algorithms for Computer and Manufacturing Sys-tems. Just-In-Time Scheduling: Models and Algorithms for Computer and Manufacturing Systems. https://doi.org/10.1007/978-0-387-71718-0
Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly. https://doi.org/10.1002/nav.3800010110
Komaki, M., & Malakooti, B. (2017). General variable neighborhood search algorithm to minimize makespan of the distributed no-wait flow shop scheduling problem. Production Engineering, 11(3), 315–329. https://doi.org/10.1007/s11740-017-0716-9
Lee, Y. H., & Jung, J. W. (2005). New heuristics for no-wait flowshop scheduling with precedence constraints and se-quence dependent setup time. Lecture Notes in Computer Science, 3483(IV), 467–476.
Liu, B., Wang, L., & Jin, Y.-H. (2006). An effective hybrid particle swarm optimization for no-wait flow shop schedul-ing. The International Journal of Advanced Manufacturing Technology, 31(9–10), 1001–1011. https://doi.org/10.1007/s00170-005-0277-5
Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91–95. https://doi.org/10.1016/0305-0483(83)90088-9
Nouri, F., Samadzad, S., & Ghahremani Nahr, J. (2019). Meta-heuristics algorithm for two-machine no-wait flow-shop scheduling problem with the effects of learning. Uncertain Supply Chain Management, 7(4), 599–618. https://doi.org/10.5267/j.uscm.2019.5.002
Pan, Q. K., Tasgetiren, M., & Liang, Y. C. (2008). A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Computers and Operations Research, 35(9), 2807–2839. https://doi.org/10.1016/j.cor.2006.12.030
Pan, Q. K., Wang, L., & Zhao, B. H. (2008). An improved iterated greedy algorithm for the no-wait flow shop schedul-ing problem with makespan criterion. International Journal of Advanced Manufacturing Technology, 38(7–8), 778–786. https://doi.org/10.1007/s00170-007-1120-y
Pinedo, M. L. (2008). Scheduling: Theory, algorithms, and systems. In Scheduling: Theory, Algorithms, and Systems. New York. https://doi.org/10.1007/978-0-387-78935-4
Qi, X., Wang, H., Zhu, H., Zhang, J., Chen, F., & Yang, J. (2016). Fast local neighborhood search algorithm for the no-wait flow shop scheduling with total flow time minimization. International Journal of Production Research, 54(16), 4957–4972. https://doi.org/10.1080/00207543.2016.1150615
Qu, C., Fu, Y., Yi, Z., & Tan, J. (2018). Solutions to no-wait flow shop scheduling problem using the flower pollination algorithm based on the hormone modulation mechanism. Complexity, 2018. https://doi.org/10.1155/2018/1973604
Rad, S. T., Gholami, S., Shafaei, R., & Seidgar, H. (2015). Bi-objective Optimization for Just in Time Scheduling : Ap-plication to the Two-Stage Assembly Flow Shop Problem. Quality Engineering and Production Optimization, 1(1), 21–32.
Rajendran, C. (1994). A no-wait flowshop scheduling heuristic to minimize makespan. Journal of the Operational Re-search Society, 45(4), 472–478. https://doi.org/10.1057/jors.1994.65
Reddi, S. S., & Ramamoorthy, C. v. (1972). On the Flow-Shop Sequencing Problem With No Wait in Process. Opera-tional Research Quarterly, 23(3), 323–331. https://doi.org/10.1057/jors.1972.52
Riahi, V., & Kazemi, M. (2016). A new hybrid ant colony algorithm for scheduling of no-wait flowshop. Operational Research, 18(1), 55–74. https://doi.org/10.1007/s12351-016-0253-x
Ruiz, R., & Allahverdi, A. (2007a). No-wait flowshop with separate setup times to minimize maximum lateness. Inter-national Journal of Advanced Manufacturing Technology, 35(5–6), 551–565. https://doi.org/10.1007/s00170-006-0726-9
Ruiz, R., & Allahverdi, A. (2007b). No-wait flowshop with separate setup times to minimize maximum lateness. Inter-national Journal of Advanced Manufacturing Technology, 35(5–6), 551–565. https://doi.org/10.1007/s00170-006-0726-9
Samarghandi, H. (2015). A particle swarm optimisation for the no-wait flow shop problem with due date constraints. In-ternational Journal of Production Research, 53(9), 2853–2870. https://doi.org/10.1080/00207543.2015.1007245
Sapkal, S. U., & Laha, D. (2013). A heuristic for no-wait flow shop scheduling. International Journal of Advanced Man-ufacturing Technology, 68(5–8), 1327–1338. https://doi.org/10.1007/s00170-013-4924-y
Schaller, J., & Valente, J. M. S. (2020). Minimizing total earliness and tardiness in a nowait flow shop. International Journal of Production Economics, 224(December 2018), 107542. https://doi.org/10.1016/j.ijpe.2019.107542
Schuster, C. J., & Framinan, J. M. (2003). Approximative procedures for no-wait job shop scheduling. Operations Re-search Letters, 31(4), 308–318. https://doi.org/10.1016/S0167-6377(03)00005-1
Selen, W. J., & Hott, D. D. (1986). A new formulation and solution of the flowshop scheduling problem with no in-process waiting. Applied Mathematical Modelling, 10(4), 246–248. https://doi.org/10.1016/0307-904X(86)90053-3
Ye, H., Li, W., Abedini, A., & Nault, B. (2017). An effective and efficient heuristic for no-wait flow shop production to minimize total completion time. Computers and Industrial Engineering, 108, 57–69. https://doi.org/10.1016/j.cie.2017.04.002
Ying, K. C., Lin, S. W., & Wu, W. J. (2016). Self-adaptive ruin-and-recreate algorithm for minimizing total flow time in no-wait flowshops. Computers and Industrial Engineering, 101, 167–176. https://doi.org/10.1016/j.cie.2016.08.014
Ying, K. C., Lu, C. C., & Lin, S. W. (2018). Improved Exact Methods for Solving No-Wait Flowshop Scheduling Prob-lems with Due Date Constraints. IEEE Access, 6, 30702–30713. https://doi.org/10.1109/ACCESS.2018.2834954
Zhang, S., Gu, X., & Zhou, F. (2020). An Improved Discrete Migrating Birds Optimization Algorithm for the No-Wait Flow Shop Scheduling Problem. IEEE Access, 8, 99380–99392. https://doi.org/10.1109/ACCESS.2020.2997379
Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Jour-nal of Operational Research, 246(2), 345–378. https://doi.org/10.1016/j.ejor.2015.04.004
Allahverdi, A., & Soroush, H. M. (2008). The significance of reducing setup times/setup costs. European Journal of Op-erational Research, 187(3), 978–984. https://doi.org/10.1016/j.ejor.2006.09.010
Bertolissi, E. (2000). Heuristic algorithm for scheduling in the no-wait flow-shop. Journal of Materials Processing Technology, 107(1–3), 459–465. https://doi.org/10.1016/S0924-0136(00)00720-2
Bewoor, L. A., Chandra Prakash, V., & Sapkal, S. U. (2017). Evolutionary hybrid particle swarm optimization algorithm for solving NP-hard no-wait flow shop scheduling problems. Algorithms, 10(4), 1–17. https://doi.org/10.3390/a10040121
Bonney, M. C., & Gundry, S. W. (1977). Solutions to the constrained flowshop sequencing problem. Operational Re-search Quarterly, 28(3), 663–670.
Brunner, E., Dette, H., & Munk, A. (1997). Box-Type Approximations in Nonparametric Factorial Designs. Journal of the American Statistical Association, 92(440), 1494–1502. https://doi.org/10.1080/01621459.1997.10473671
Cheng, C. Y., Ying, K. C., Li, S. F., & Hsieh, Y. C. (2019). Minimizing makespan in mixed no-wait flowshops with se-quence-dependent setup times. Computers and Industrial Engineering, 130(December 2018), 338–347. https://doi.org/10.1016/j.cie.2019.02.041
Ding, J.-Y., Song, S., Gupta, J. N. D., Zhang, R., Chiong, R., & Wu, C. (2015). An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Applied Soft Computing, 30, 604–613. https://doi.org/10.1016/j.asoc.2015.02.006
Du, K.-L., & Swamy, M. N. S. (2016). Search and Optimization by Metaheuristics. In Search and Optimization by Me-taheuristics. https://doi.org/10.1007/978-3-319-41192-7
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP- completeness. New York: Freeman.
Gilmore, P. C., & Gomory, R. E. (1964). Sequencing a one state - variable machine: A solvable case of the traveling salesman problem. IBM Watson Research Center, Yorktown Heights, New York, 6(3), 30–32. https://doi.org/10.1063/1.3061193
Grabowski, J., & Pempera, J. (2005). Some local search algorithms for no-wait flow-shop problem with makespan crite-rion. Computers & Operations Research, 32(8), 2197–2212. https://doi.org/10.1016/j.cor.2004.02.009
Gupta, J. N. D., & Stafford, E. F. (2006). Flowshop scheduling research after five decades. European Journal of Opera-tional Research, 169(3), 699–711. https://doi.org/10.1016/j.ejor.2005.02.001
Joanna Józefowska. (2007). Just-In-Time Scheduling: Models and Algorithms for Computer and Manufacturing Sys-tems. Just-In-Time Scheduling: Models and Algorithms for Computer and Manufacturing Systems. https://doi.org/10.1007/978-0-387-71718-0
Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly. https://doi.org/10.1002/nav.3800010110
Komaki, M., & Malakooti, B. (2017). General variable neighborhood search algorithm to minimize makespan of the distributed no-wait flow shop scheduling problem. Production Engineering, 11(3), 315–329. https://doi.org/10.1007/s11740-017-0716-9
Lee, Y. H., & Jung, J. W. (2005). New heuristics for no-wait flowshop scheduling with precedence constraints and se-quence dependent setup time. Lecture Notes in Computer Science, 3483(IV), 467–476.
Liu, B., Wang, L., & Jin, Y.-H. (2006). An effective hybrid particle swarm optimization for no-wait flow shop schedul-ing. The International Journal of Advanced Manufacturing Technology, 31(9–10), 1001–1011. https://doi.org/10.1007/s00170-005-0277-5
Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91–95. https://doi.org/10.1016/0305-0483(83)90088-9
Nouri, F., Samadzad, S., & Ghahremani Nahr, J. (2019). Meta-heuristics algorithm for two-machine no-wait flow-shop scheduling problem with the effects of learning. Uncertain Supply Chain Management, 7(4), 599–618. https://doi.org/10.5267/j.uscm.2019.5.002
Pan, Q. K., Tasgetiren, M., & Liang, Y. C. (2008). A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Computers and Operations Research, 35(9), 2807–2839. https://doi.org/10.1016/j.cor.2006.12.030
Pan, Q. K., Wang, L., & Zhao, B. H. (2008). An improved iterated greedy algorithm for the no-wait flow shop schedul-ing problem with makespan criterion. International Journal of Advanced Manufacturing Technology, 38(7–8), 778–786. https://doi.org/10.1007/s00170-007-1120-y
Pinedo, M. L. (2008). Scheduling: Theory, algorithms, and systems. In Scheduling: Theory, Algorithms, and Systems. New York. https://doi.org/10.1007/978-0-387-78935-4
Qi, X., Wang, H., Zhu, H., Zhang, J., Chen, F., & Yang, J. (2016). Fast local neighborhood search algorithm for the no-wait flow shop scheduling with total flow time minimization. International Journal of Production Research, 54(16), 4957–4972. https://doi.org/10.1080/00207543.2016.1150615
Qu, C., Fu, Y., Yi, Z., & Tan, J. (2018). Solutions to no-wait flow shop scheduling problem using the flower pollination algorithm based on the hormone modulation mechanism. Complexity, 2018. https://doi.org/10.1155/2018/1973604
Rad, S. T., Gholami, S., Shafaei, R., & Seidgar, H. (2015). Bi-objective Optimization for Just in Time Scheduling : Ap-plication to the Two-Stage Assembly Flow Shop Problem. Quality Engineering and Production Optimization, 1(1), 21–32.
Rajendran, C. (1994). A no-wait flowshop scheduling heuristic to minimize makespan. Journal of the Operational Re-search Society, 45(4), 472–478. https://doi.org/10.1057/jors.1994.65
Reddi, S. S., & Ramamoorthy, C. v. (1972). On the Flow-Shop Sequencing Problem With No Wait in Process. Opera-tional Research Quarterly, 23(3), 323–331. https://doi.org/10.1057/jors.1972.52
Riahi, V., & Kazemi, M. (2016). A new hybrid ant colony algorithm for scheduling of no-wait flowshop. Operational Research, 18(1), 55–74. https://doi.org/10.1007/s12351-016-0253-x
Ruiz, R., & Allahverdi, A. (2007a). No-wait flowshop with separate setup times to minimize maximum lateness. Inter-national Journal of Advanced Manufacturing Technology, 35(5–6), 551–565. https://doi.org/10.1007/s00170-006-0726-9
Ruiz, R., & Allahverdi, A. (2007b). No-wait flowshop with separate setup times to minimize maximum lateness. Inter-national Journal of Advanced Manufacturing Technology, 35(5–6), 551–565. https://doi.org/10.1007/s00170-006-0726-9
Samarghandi, H. (2015). A particle swarm optimisation for the no-wait flow shop problem with due date constraints. In-ternational Journal of Production Research, 53(9), 2853–2870. https://doi.org/10.1080/00207543.2015.1007245
Sapkal, S. U., & Laha, D. (2013). A heuristic for no-wait flow shop scheduling. International Journal of Advanced Man-ufacturing Technology, 68(5–8), 1327–1338. https://doi.org/10.1007/s00170-013-4924-y
Schaller, J., & Valente, J. M. S. (2020). Minimizing total earliness and tardiness in a nowait flow shop. International Journal of Production Economics, 224(December 2018), 107542. https://doi.org/10.1016/j.ijpe.2019.107542
Schuster, C. J., & Framinan, J. M. (2003). Approximative procedures for no-wait job shop scheduling. Operations Re-search Letters, 31(4), 308–318. https://doi.org/10.1016/S0167-6377(03)00005-1
Selen, W. J., & Hott, D. D. (1986). A new formulation and solution of the flowshop scheduling problem with no in-process waiting. Applied Mathematical Modelling, 10(4), 246–248. https://doi.org/10.1016/0307-904X(86)90053-3
Ye, H., Li, W., Abedini, A., & Nault, B. (2017). An effective and efficient heuristic for no-wait flow shop production to minimize total completion time. Computers and Industrial Engineering, 108, 57–69. https://doi.org/10.1016/j.cie.2017.04.002
Ying, K. C., Lin, S. W., & Wu, W. J. (2016). Self-adaptive ruin-and-recreate algorithm for minimizing total flow time in no-wait flowshops. Computers and Industrial Engineering, 101, 167–176. https://doi.org/10.1016/j.cie.2016.08.014
Ying, K. C., Lu, C. C., & Lin, S. W. (2018). Improved Exact Methods for Solving No-Wait Flowshop Scheduling Prob-lems with Due Date Constraints. IEEE Access, 6, 30702–30713. https://doi.org/10.1109/ACCESS.2018.2834954
Zhang, S., Gu, X., & Zhou, F. (2020). An Improved Discrete Migrating Birds Optimization Algorithm for the No-Wait Flow Shop Scheduling Problem. IEEE Access, 8, 99380–99392. https://doi.org/10.1109/ACCESS.2020.2997379