How to cite this paper
Golab, A., Gooya, E., Falou, A & Cabon, M. (2022). Review of conventional metaheuristic techniques for resource-constrained project scheduling problem.Journal of Project Management, 7(2), 95-110.
Refrences
Afshar-Nadjafi, B., Yazdani, M., & Majlesi, M. (2017). A Hybrid of Tabu Search and Simulated Annealing Algorithms for Preemptive Project Scheduling Problem. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 102-111). Cham: Springer.
Agarwal, A., Colak, S., & Erenguc, S. (2011). A Neurogenetic approach for the resource-constrained project scheduling problem. Computers & Operations Research, 38(1), 44–50.
Agarwal, A., Colak, S., & Erenguc, S. (2015). Metaheuristic Methods. In Handbook on Project Management and Scheduling (Vol. 1, pp. 57-74). cham: Springer.
Akbari, R., Zeighami, V., & Ziarati, K. (2010). Artificial Bee colony for resource constrained project scheduling problem. International Journal of Industrial Engineering Computations, 2(1), 45-60.
Alcaraz, J., & Maroto, C. (2001). A Robust Genetic Algorithm for Resource Allocation in Project Scheduling. Annals of operations Research, 102(1), 83-109.
Alcaraz, J., & Maroto, C. (2006). a hybrid genetic algorithm based on intelligant endoding for project schedulig. In Perspectives in modern project scheduling (pp. 249-274). Boston: Springer.
Ali, I. M., Elsayed, S. M., Ray, T., & Sarker, R. A. (2015, May). Memetic Algorithm for solving Resource Constrained Project Scheduling Problems. In 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 2761-2767). IEEE.
Alipouri, Y., Sebt, M. H., Ardeshir, A., & Chan, W. T. (2019). Solving the FS-RCPSP with hyper-heuristics: A policy-driven approach. Journal of the Operational Research Society, 70(3), 403-419.
Anagnostopoulos, K. P., & Koulinas, G. K. (2010, July). A Genetic Hyperheuristic Algorithm for the Resource Constrained Project Scheduling Problem. In IEEE Congress on Evolutionary Computation (pp. 1-6). IEEE.
Anantathanvit, M., & Munlin, M.-A. (2014, March). Radius particle swarm optimization for resource constrained project scheduling problem. In 16th Int'l Conf. Computer and Information Technology (pp. 24-29). IEEE.
Atli, O. (2011). Tabu Search and an Exact Algorithm for the Solutions of Resource-Constrained Project Scheduling Problems. International Journal of Computational Intelligence Systems, 4(2), 255-267.
Ballestin, F. (2007, April). A Genetic Algorithm for the Resource Renting Problem with Minimum and Maximum Time Lags. Dans European Conference on Evolutionary Computation in Combinatorial Optimization (pp. 25-35). Berlin, Heidelberg: Springer.
Ballestín, F., Barrios, A., & Valls, V. (2011). An evolutionary algorithm for the resource-constrained project scheduling problem with minimum and maximum time lags. Journal of scheduling, 14(4), 391-406.
Bettemir, Ö. H., & Sonmez, R. (2015). Hybrid Genetic Algorithm with Simulated Annealing for Resource-Constrained Project Scheduling. Journal of Management in Engineering, 31(5).
Bettemir, Ö. H., & Sonmez, R. (2015). Hybrid Genetic Algorithm with Simulated Annealing for Resource-Constrained Project Scheduling. Journal of Management in Engineering, 31(5).
Boctor, F. F. (1996). Resource-constrained project scheduling by simulated annealing. International Journal of Production Research, 34(8), 2335-2351.
Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European journal of operational research, 149(2), 268-281.
Chen, R.-M., & Lo, S.-T. (2006). Using an Enhanced Ant Colony System to Solve Resource-Constrained Project Scheduling Problem. Int. J. Comput. Sci. Netw. Secur, 6, 75-85.
Chen, R.-M., Wu, C.-L., Wang, C.-M., & Lo, S.-T. (2010). Using novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIB. Expert systems with applications, 37(3), 1899–1910.
Chen, W., Shi, Y.-j., Teng, H.-f., Lan, X.-p., & Hu, L.-c. (2010). An efficient hybrid algorithm for resource-constrained project scheduling. Information Sciences, 180(6), 1031-1039.
Cho, J., & Kim, Y.-D. (1997). A simulated annealing algorithm for resource constrained project scheduling problems. Journal of the Operational Research Society, 48(7), 736-744.
Cho, J., & Kim, Y.-D. (1997). A simulated annealing algorithm for resource-constrained project scheduling problems. Journal of the Operational Research Society, 48(7), 736-744.
Crawford, B. a., Johnson, F., Norero, E., & Olgun, E. (2015). An Artificial Bee Colony Algorithm for the Resource Contrained Project Scheduling Problem. In International Conference on Human-Computer Interaction (pp. 582-586). Springer.
Dai, H., Cheng, W., & Guo, P. (2018). An Improved Tabu Search for Multi-skill Resource-Constrained Project Scheduling Problems Under Step-Deterioration. Arabian Journal for Science and Engineering, 43(6), 3279–3290.
Das, P. P., & Acharyya, S. (2011). Simulated Annealing Variants for Solving Resource Constrained Project Scheduling Problem: A Comparative Study. In 14th International Conference on Computer and Information Technology (ICCIT 2011) (pp. 469-474). IEEE.
Debels, D., & Vanhoucke, M. (2005, May). A Bi-population Based Genetic Algorithm for the Resource-Constrained Project Scheduling Problem. In International Conference on Computational Science and Its Applications (pp. 378--387). Berlin, Heidelberg: Springer.
Debels, D., & Vanhoucke, M. (2007). A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem. Operations Research, 55(3), 457-469.
Delgoshaei, A., Ariffin, M., Baharudin, B., & Leman, Z. (2015). Minimizing makespan of a resource-constrained scheduling problem: A hybrid greedy and genetic algorithms. International Journal of Industrial Engineering Computations, 6(4), 503–520.
Deng, L., Lin, V., & Chen, M. (2010). Hybrid ant colony optimization for the resource-constrained project scheduling problem. Journal of Systems Engineering and Electronics, 21(1), 67-71.
Diana, S., Ganapathy, L., & Pundir, A. K. (2013). An Improved Genetic Algorithm for Resource Constrained Project Scheduling Problem. International Journal of Computer Applications, 78(9), 34-39.
Dong, N., Ge, D., Fischer, M., & Haddad, Z. (2012). A genetic algorithm-based method for look-ahead scheduling in the finishing phase of construction projects. Advanced Engineering Informatics, 26(4), 737-748.
Dorigo, M., & Di Caro, G. (1999). Ant Colony Optimization: A New Meta-Heuristic. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (pp. 1470-1477). IEEE.
Dridi, O., Krichen, S., & Guitouni, A. (2013). Solving Resource-Constrained Project Scheduling Problem by A Genetic Local Search Approach. Dans 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO) (pp. 1-5). IEEE.
Eshraghi, A. (2016). A new approach for solving resource constrained project scheduling problems using differential evolution algorithm. International journal of industrial engineering computations, 7(2), 205-216.
Fang, C., Kolisch, R., Wang, L., & Mu, C. (2015). An estimation of distribution algorithm and new computational results for the stochastic resource constrained project scheduling problem. Flexible Services and Manufacturing Journal, 27(4), 585–605.
Fang, C., Wang, L., & Xu, Y. (2010). An estimation of distribution algorithm for resource-constrained project scheduling problem. In 2010 Chinese Control and Decision Conference (pp. 265-270). IEEE.
Fathallahi, F., & Najafi, A. A. (2016). A hybrid genetic algorithm to maximize net present value of project cash flows in resource constrained project scheduling problem with fuzzy parameters. Scientia Iranica, 23(4), 1893-1903.
Frankola, T., Golub, M., & Jakobovic, D. (2008). Evolutionary Algorithms for the Resource Constrained Scheduling Problem. In ITI 2008-30th International Conference on Information Technology Interfaces (pp. 715-722). IEEE.
Gargiulo, F., & Quagliarella, D. (2012). Genetic Algorithms for the Resource Constrained Project Scheduling Problem. In 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI) (pp. 39-47). IEEE.
Gendreau, M., & Potvin, J.-Y. (2010). Handbook of metaheuristics (Vol. 2). New York: Springer.
Gonalves, J. F., Resende, M. G., & Mendes, J. J. (2011). A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem. Journal of Heuristics, 17(5), 467–486.
Goncharov, E. N., & Leonov, V. V. (2017). Genetic Algorithm for the Resource-Constrained Project Scheduling Problem. Automation and Remote Control, 78(6), 1101-1114.
Hartman, S. (2001). A comparative genetic algorithm for resource-constraint project scheduling. Naval Research Logistics, 49, 433-488.
Hartmann, S. (1998). A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling. Naval Research Logistics, 45(7), 733-750.
Hindi, K. S., Yang, H., & Fleszar, K. (2002). An Evolutionary Algorithm for Resource-Constrained Project Scheduling. IEEE Transactions on evolutionary computation, 6(5), 512-518.
Jedrzejowicz, P., & Ratajczak-Ropel, E. (2014). Reinforcement Learning strategies for A-Team solving the Resource-Constrained Project Scheduling Problem. Neurocomputing, 146, 301-307.
Jia, Q., & Seo, Y. (2013). An improved particle swarm optimization for the resource-constrained project scheduling problem. The International Journal of Advanced Manufacturing Technology, 67(9-12), 2627-2638.
Jia, Q., & Seo, Y. (2013). Solving resource-constrained project scheduling problems: Conceptual validation of FLP formulation and efficient permutation-based ABC computation. Computers & Operations Research, 40(8), 2037-2050.
Joshi, D., Mittal, M., Sharma, M. K., & Kumar, M. (2019). An effective teaching-learning based optimization algorithm for the multi-skill resource-constrained project scheduling problem. Journal of Modelling in Management, 14(4), 195-211.
Joy, J., Rajeev, S., & Narayanan, V. (2016). Particle swarm optimization for resource Constrained-project scheduling problem with varying resource levels. Procedia Technology, 25, 948-954.
Kadam, S. U., & Kadam, N. S. (2014). Solving Resource-Constrained Project Scheduling Problem by Genetic Algorithm. In 2014 2nd International Conference on Business and Information Management (ICBIM) (pp. 159-164). IEEE.
Kadam, S. U., & Mane, S. U. (2015). A Genetic-Local Search Algorithm Approach for Resource Constrained Project Scheduling Problem. In 2015 International Conference on Computing Communication Control and Automation (pp. 841-846). IEEE.
Kadri, R. L., & Boctor, F. F. (2018). An effcient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times. European Journal of Operational Research, 295(2), 454-462.
Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. In Proceedings of ICNN'95-international conference on neural networks (pp. 1942-1948). IEEE.
Khalili, S., Najafi, A. A., & Niaki, S. T. (2013). Bi-objective resource constrained project scheduling problem with makespan and net present value criteria: two meta-heuristic algorithms. The International Journal of Advanced Manufacturing Technology, 69(1-4), 617-626.
Kim, J.-L. (2007). Permutation-based elitist genetic algorithm using serial scheme for large-sized resource-constrained project schedulig. In 2007 Winter Simulation Conference (pp. 2112-2118). IEEE.
Kim, J.-L. (2009). Improved genetic algorithm for resource constrained scheduling of large projects. Canadian journal of civil engineering, 36(6), 1016-1027.
Kim, J.-L., & Ellis Jr, R. D. (2008). Permutation-Based Elitist Genetic Algorithm for Optimization of Large-Sized Resource-Constrained Project Scheduling. Journal of construction engineering and management, 134(11), 904-913.
Kim, K. W., Gen, M., & Yamazaki, G. (2003). Hybrid genetic algorithm with fuzzy logic for resource-constrained project scheduling. Applied soft computing, 2(3), 174-188.
Klimek, M. (2010). A genetic algorithm for the project scheduling with the resource constraints. Annales Universitatis Mariae Curie-Sklodowska, sectio AI--Informatica, 10(1), 117-130.
Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174(1), 23-37.
Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem. Information Sciences, 277, 680-693.
Kumar, M., Mittal, M. L., Soni, G., & Joshi, D. (2018). A hybrid TLBO-TS algorithm for integrated selection and scheduling of projects. Computers & Industrial Engineering, 119, 121-130.
Kumar, N., & Vidyarthi, D. P. (2016). A model for resource-constrained project scheduling using adaptive PSO. Soft Computing, 20(4), 1565-1580.
lazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource constraints: Classification and complexity. Discrete applied mathematics, 5(1), 11-24.
Li, F., Lai, C., & Shou, Y. (2011). Particle swarm optimization for preemptive project scheduling with resource constraints. In 2011 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 869-873). IEEE.
Li, M., Zhang, Y., Jiang, W., & Xie, J. (2009). A Particle Swarm Optimization Algorithm with Crossover for Resource Constrained Project Scheduling Problem. In 2009 IITA International Conference on Services Science, Management and Engineering (pp. 69-72). IEEE.
Liu, J., Liu, Y., Shi, Y., & Li, J. (2020). Solving Resource-Constrained Project Scheduling Problem via Genetic Algorithm. Journal of Computing in Civil Engineering, 34(2).
Lo, S.-T., Chen, R.-M., Shiau, D.-F., & Wu, C.-L. (2008). Using particle swarm optimization to solve resource-constrained scheduling p,roblems. In 2008 IEEE Conference on Soft Computing in Industrial Applications (pp. 38-43). IEEE.
Luo, S., Wang, C., & Wang, J. (2003). Ant Colony Optimization for Resource-Constrained Project Scheduling with Generalized Precedence Relations. In Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligenc (pp. 284-289). IEEE.
Mendes, J. J., Gonçalves, J. F., & Resende, M. G. (2009). A random key based genetic algorithm for the resource constrained project scheduling problem. Computers & Operations Research, 36(1), 92-109.
Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, 6(4), 333-346.
Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant Colony Optimization for Resource-Constrained Project Scheduling. IEEE transactions on evolutionary computation, 6(4), 333-346.
Mobini, M., Mobini, Z., & Rabbani, M. (2011). An Artificial Immune Algorithm for the project scheduling problem under resource constraints. Applied Soft Computing, 11(2), 1975-1982.
Montoya-Torres, J. R., Gutierrez-Franco, E., & Pirachican-Mayorga, C. (2010). Project scheduling with limited resources using a genetic algorithm. International Journal of Project Management, 28(6), 619-628.
Munlin, M. (2018). Solving resource-constrained project scheduling problem using metaheuristic algorithm. In 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE) (pp. 344-349). IEEE.
Munlin, M., & Anantathanavit, M. (2016). Hybrid Radius Particle Swarm Optimization. In 2016 IEEE Region 10 Conference (TENCON) (pp. 2180-2184). IEEE.
Myszkowski, P. B., Skowronski, M. E., Olech, L. P., & Oslizlo, K. (2015). Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem. Soft Computing, 19(12), 3599-3619.
Nasiri, M. M. (2013). A pseudo particle swarm optimization for the RCPSP. The International Journal of Advanced Manufacturing Technology, 65(5-8), 909-918.
Ortiz-Pimiento, N. R., & Diaz-Serna, F. J. (2018). The project scheduling problem with non-deterministic activities duration: A literature review. Journal of Industrial Engineering and Management (JIEM), 11(1), 116-134.
Pan, N.-H., & Lin, Y.-Y. (2011). Using hybrid simulated annealing algorithm in resource constrained project scheduling problem. Journal of Statistics and Management Systems, 14(3), 555-582.
Pan, N.-H., Hsaio, P.-W., & Chen, K.-Y. (2008). A study of project scheduling optimization using Tabu Search algorithm. Engineering Applications of Artificial Intelligence, 21(7), 1101–1112.
Pan, X., & Chen, H. (2010). A Multi-Agent Social Evolutionary Algorithm for Resource-Constrained Project scheduling. In 2010 International Conference on Computational Intelligence and Security (pp. 209-213). IEEE.
Pan, X., & Chen, H. (2010). A Multi-Agent Social Evolutionary Algorithm for Resource-Constrained Project Scheduling. In 2010 International Conference on Computational Intelligence and Security (pp. 209-213). IEEE.
Paraskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G. (2012). Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm. Expert Systems with Applications, 39(4), 3983–3994.
Peng, W., & Wei, Y. (2008). PSO for Solving RCPSP. In 2008 Chinese control and decision conference (pp. 818-822). IEEE.
Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The Bees Algorithm- A Novel Tool for Complex Optimisation Problems. In Intelligent production machines and systems (pp. 454-459). Elsevier.
Proon, S., & Jin, M. (2011). A Genetic Algorithm with Neighborhood Search for the Resource-Constrained Project Scheduling Problem. Naval Research Logistics (NRL), 58(2), 73-82.
Quoc, H. D., The, L. N., Doan, C. N., & Thanh, T. P. (2020). New Effective Differential Evolution Algorithm for the Project Scheduling Problem. In 2020 2nd International Conference on Computer Communication and the Internet (ICCCI) (pp. 150-157). IEEE.
Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching–learning-based optimization : A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315.
Ren, Y. H., Kong, D. C., & Peng, W. L. (2011). A Genetic Algorithm based Solution with Schedule Mode for RCPSP. In Advanced Materials Research (pp. 1802-1805). Trans Tech Publ.
Roy, B., & Sen, A. K. (2019). Meta-heuristic Techniques to Solve Resource-Constrained Project Scheduling Problem. In International conference on innovative computing and communications (pp. 93-99). Springer.
Sadeghi, A., Kalanaki, A., Noktehdan, A., Samghabadi, A. S., & Barzinpour, F. (2011). Using Bees Algorithm to Solve the Resource Constrained Project Scheduling Problem in PSPLIB. In International Conference on Theoretical and Mathematical Foundations of Computer Science (pp. 486-494). Berlin, Heidelberg: Springer.
Sakalauskas, L. a. (2006). Optimization of resource constrained project schedules by genetic algorithm based on the job priority list. Information technology and control, 35(4), 412-419.
Sakalauskas, L., & Felinskas, G. (2006). Optimization of Resource-Constrained Project Schedules by Simulated Annealing and Variable Neighborhood Search. Technological and economic development of economy, 12(4), 307-313.
Sallam, K. M., Chakrabortty, R. K., & Ryan, M. J. (2019). A Hybrid Differential Evolution with Cuckoo Search for Solving Resource Constrained Project Scheduling Problems. In 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1344-1348). IEEE.
Sanaei, P., Akbari, R., Zeighami, V., & Shams, S. (2013). Using Firefly Algorithm to Solve Resource Constrained Project Scheduling Problem. In Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012) (pp. 417-428). Springer.
Shan, M., Wu, J., & Peng, D. (2007). Particle Swarm and Ant Colony Algorithms Hybridized for Multi-mode Resource-constrained Project Scheduling Problem with Minimum Time Lag. In 2007 International Conference on Wireless Communications, Networking and Mobile Computing (pp. 5898-5902). IEEE.
Shi, Y.-j., Qu, F.-Z., Chen, W., & Li, B. (2010). An Artificial Bee Colony with Random Key for Resource-Constrained Project Scheduling. In Life system modeling and intelligent computing (pp. 148-157). Berlin, Heidelberg: Springer.
Shou, Y. (2007). A Bi-directional Ant colony algorithm for resource constrained project scheduling. In 2007 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1027-1031). IEEE.
Shou, Y., Li, Y., & Lai, C. (2015). Hybrid particle swarm optimization for preemptive resource-constrained project scheduling. Neurocomputing, 148, 122–128.
Skowroński, M. E., Myszkowski, P. B., Adamski, M., & Kwiatek, P. (2013). Tabu Search approach for Multi–Skill Resource–Constrained Project Scheduling Problem. In 2013 Federated Conference on Computer Science and Information Systems (pp. 153-158). IEEE.
Sprecher, A., Kolisch, R., & Drexl, A. (1995). Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. European Journal of Operational Research, 80(1), 94-102.
Stiti, C., & Driss, O. B. (2019). A new approach for the multi-site resource-constrained project scheduling problem. Procedia Computer Science, 164, 478-484.
Tahooneh, A., & Ziarati, K. (2011). Using Artificial Bee Colony to Solve Stochastic Resource Constrained Project Scheduling Problem. In International Conference in Swarm Intelligence (pp. 293-302). Berlin, Heidelberg: Springer.
Tchomte, S. K., & Gourgand, M. (2009). Particle swarm optimization : A study of particle displacement for solving continuous and combinatorial optimization problems. International Journal of Production Economics, 121(1), 57-67.
Thammano, A., & Phu-Ang, A. (2012). A hybrid evolutionary algorithm for the resource-constrained project scheduling problem. Artificial Life and Robotics, 17(2), 312–316.
Thomas, P. R., & Salhi, S. (1998). A Tabu Search Approach for the Resource Constrained Project Scheduling Problem. Journal of Heuristics, 4(2), 123-139.
Thomas, P. R., & Salhi, S. (1998). A Tabu Search Approach for the Resource Constrained Project Scheduling Problem. Journal of Heuristics, 4, 123-139.
Tseng, L.-Y., & Chen, S.-C. (2006). A hybrid metaheuristic for the resource-constrained project scheduling problem. European Journal of Operational Research, 175(2), 707-721.
Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 185(2), 495-508.
Wang, H., Li, T., & Lin, D. (2010). Efficient Genetic Algorithm for Resource-Constrained Project Scheduling Problem. Transactions of Tianjin University, 16(5), 376–382.
Wang, H., Lin, D., & Li, M. (2005). A Genetic Algorithm for Solving Fuzzy Resource-Constrained Project Scheduling. In International Conference on Natural Computation (pp. 171-180). Berlin, Heidelberg: Springer.
Wang, L., & Fang, C. (2012). A hybrid estimation of distribution algorithm for solving the resource-constrained project scheduling problem. Journal of Expert Systems with Applications, 39, 2451-2460.
Wang, Q., & Qi, J. (2009). Improved Particle Swarm Optimization for RCP Scheduling Problem. In The Sixth International Symposium on Neural Networks (ISNN 2009) (pp. 49-57). Berlin: Springer.
Yu, X., Zhan, D., Nie, L., & Xu, X. (2009). A Novel Genetic Simulated Annealing Algorithm for the Resource-Constrained Project Scheduling Problem. In 2009 International Workshop on Intelligent Systems and Applications (pp. 1-4). IEEE.
Yuan, Y., Wang, K., & Ding, L. (2009, August). A Solution to Resource-Constrained Project Scheduling Problem. In 2009 Ninth International Conference on Hybrid Intelligent Systems (Vol. 1, pp. 446-450). IEEE.
Zamani, R. (2013). A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem. European Journal of Operational Research, 229(2), 552–559.
Zeighami, V., Akbari, R., Akbari, I., & Biletskiy, Y. (2012). An ABC-Genetic method to solve resource constrained project scheduling problem. Artificial Intelligence Research (AIR) Journal, SCIEDU, Canada, 1(2), 185-197.
Zhang, H., & Li, H. :. (2006). Permutation-based particle swarm optimization for resource-constrained project scheduling. Journal of computing in civil engineering, 20(2), 141-149.
Zhang, H., Li, X., Li, H., & Huang, F. (2005). Particle swarm optimization-based schemes for resource-constrained project scheduling. Automation in construction, 14(3), 393-404.
Zhang, K., Zhao, G., & Jiang, J. (2009). Particle Swarm Optimization Method for Resource-Constrained Project Scheduling Problem. In 2009 9th International Conference on Electronic Measurement & Instruments (pp. 4-792). IEEE.
Zheng, H.-y., & Wang, L. (2015). An effective teaching–learning-based optimisation algorithm for RCPSP with ordinal interval numbers. International Journal of Production Research, 53(6), 1777-1790.
Zheng, H.-y., Wang, L., & Wang, S.-y. (2014). A Co-evolutionary Teaching-learning-based Optimization Algorithm for Stochastic RCPSP. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 587-594). IEEE.
Zheng, H.-y., Wang, L., & Zheng, X.-l. (2017). Teaching–learning-based optimization algorithm for multi-skill resource constrained project scheduling problem. Soft Computing, 21(6), 1537-1548.
Zhou, Y., Guo, Q., & Gan, R. (2009). Improved ACO Algorithm for Resource-Constrained Project Scheduling Problem. In 2009 international conference on artificial intelligence and computational intelligence (Vol. 3, pp. 358-365). IEEE.
Zhu, J., Li, X., & Shen, W. (2011). Effective genetic algorithm for resource-constrained project scheduling with limited preemptions. International Journal of Machine Learning and Cybernetics, 2(2), 55–65.
Ziarati, K., Akbari, R., & Zeighami, V. (2011). On the performance of bee algorithms for resource-constrained project scheduling problem. Applied Soft Computing, 11(4), 3720–3733.
Agarwal, A., Colak, S., & Erenguc, S. (2011). A Neurogenetic approach for the resource-constrained project scheduling problem. Computers & Operations Research, 38(1), 44–50.
Agarwal, A., Colak, S., & Erenguc, S. (2015). Metaheuristic Methods. In Handbook on Project Management and Scheduling (Vol. 1, pp. 57-74). cham: Springer.
Akbari, R., Zeighami, V., & Ziarati, K. (2010). Artificial Bee colony for resource constrained project scheduling problem. International Journal of Industrial Engineering Computations, 2(1), 45-60.
Alcaraz, J., & Maroto, C. (2001). A Robust Genetic Algorithm for Resource Allocation in Project Scheduling. Annals of operations Research, 102(1), 83-109.
Alcaraz, J., & Maroto, C. (2006). a hybrid genetic algorithm based on intelligant endoding for project schedulig. In Perspectives in modern project scheduling (pp. 249-274). Boston: Springer.
Ali, I. M., Elsayed, S. M., Ray, T., & Sarker, R. A. (2015, May). Memetic Algorithm for solving Resource Constrained Project Scheduling Problems. In 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 2761-2767). IEEE.
Alipouri, Y., Sebt, M. H., Ardeshir, A., & Chan, W. T. (2019). Solving the FS-RCPSP with hyper-heuristics: A policy-driven approach. Journal of the Operational Research Society, 70(3), 403-419.
Anagnostopoulos, K. P., & Koulinas, G. K. (2010, July). A Genetic Hyperheuristic Algorithm for the Resource Constrained Project Scheduling Problem. In IEEE Congress on Evolutionary Computation (pp. 1-6). IEEE.
Anantathanvit, M., & Munlin, M.-A. (2014, March). Radius particle swarm optimization for resource constrained project scheduling problem. In 16th Int'l Conf. Computer and Information Technology (pp. 24-29). IEEE.
Atli, O. (2011). Tabu Search and an Exact Algorithm for the Solutions of Resource-Constrained Project Scheduling Problems. International Journal of Computational Intelligence Systems, 4(2), 255-267.
Ballestin, F. (2007, April). A Genetic Algorithm for the Resource Renting Problem with Minimum and Maximum Time Lags. Dans European Conference on Evolutionary Computation in Combinatorial Optimization (pp. 25-35). Berlin, Heidelberg: Springer.
Ballestín, F., Barrios, A., & Valls, V. (2011). An evolutionary algorithm for the resource-constrained project scheduling problem with minimum and maximum time lags. Journal of scheduling, 14(4), 391-406.
Bettemir, Ö. H., & Sonmez, R. (2015). Hybrid Genetic Algorithm with Simulated Annealing for Resource-Constrained Project Scheduling. Journal of Management in Engineering, 31(5).
Bettemir, Ö. H., & Sonmez, R. (2015). Hybrid Genetic Algorithm with Simulated Annealing for Resource-Constrained Project Scheduling. Journal of Management in Engineering, 31(5).
Boctor, F. F. (1996). Resource-constrained project scheduling by simulated annealing. International Journal of Production Research, 34(8), 2335-2351.
Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European journal of operational research, 149(2), 268-281.
Chen, R.-M., & Lo, S.-T. (2006). Using an Enhanced Ant Colony System to Solve Resource-Constrained Project Scheduling Problem. Int. J. Comput. Sci. Netw. Secur, 6, 75-85.
Chen, R.-M., Wu, C.-L., Wang, C.-M., & Lo, S.-T. (2010). Using novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIB. Expert systems with applications, 37(3), 1899–1910.
Chen, W., Shi, Y.-j., Teng, H.-f., Lan, X.-p., & Hu, L.-c. (2010). An efficient hybrid algorithm for resource-constrained project scheduling. Information Sciences, 180(6), 1031-1039.
Cho, J., & Kim, Y.-D. (1997). A simulated annealing algorithm for resource constrained project scheduling problems. Journal of the Operational Research Society, 48(7), 736-744.
Cho, J., & Kim, Y.-D. (1997). A simulated annealing algorithm for resource-constrained project scheduling problems. Journal of the Operational Research Society, 48(7), 736-744.
Crawford, B. a., Johnson, F., Norero, E., & Olgun, E. (2015). An Artificial Bee Colony Algorithm for the Resource Contrained Project Scheduling Problem. In International Conference on Human-Computer Interaction (pp. 582-586). Springer.
Dai, H., Cheng, W., & Guo, P. (2018). An Improved Tabu Search for Multi-skill Resource-Constrained Project Scheduling Problems Under Step-Deterioration. Arabian Journal for Science and Engineering, 43(6), 3279–3290.
Das, P. P., & Acharyya, S. (2011). Simulated Annealing Variants for Solving Resource Constrained Project Scheduling Problem: A Comparative Study. In 14th International Conference on Computer and Information Technology (ICCIT 2011) (pp. 469-474). IEEE.
Debels, D., & Vanhoucke, M. (2005, May). A Bi-population Based Genetic Algorithm for the Resource-Constrained Project Scheduling Problem. In International Conference on Computational Science and Its Applications (pp. 378--387). Berlin, Heidelberg: Springer.
Debels, D., & Vanhoucke, M. (2007). A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem. Operations Research, 55(3), 457-469.
Delgoshaei, A., Ariffin, M., Baharudin, B., & Leman, Z. (2015). Minimizing makespan of a resource-constrained scheduling problem: A hybrid greedy and genetic algorithms. International Journal of Industrial Engineering Computations, 6(4), 503–520.
Deng, L., Lin, V., & Chen, M. (2010). Hybrid ant colony optimization for the resource-constrained project scheduling problem. Journal of Systems Engineering and Electronics, 21(1), 67-71.
Diana, S., Ganapathy, L., & Pundir, A. K. (2013). An Improved Genetic Algorithm for Resource Constrained Project Scheduling Problem. International Journal of Computer Applications, 78(9), 34-39.
Dong, N., Ge, D., Fischer, M., & Haddad, Z. (2012). A genetic algorithm-based method for look-ahead scheduling in the finishing phase of construction projects. Advanced Engineering Informatics, 26(4), 737-748.
Dorigo, M., & Di Caro, G. (1999). Ant Colony Optimization: A New Meta-Heuristic. In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (pp. 1470-1477). IEEE.
Dridi, O., Krichen, S., & Guitouni, A. (2013). Solving Resource-Constrained Project Scheduling Problem by A Genetic Local Search Approach. Dans 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO) (pp. 1-5). IEEE.
Eshraghi, A. (2016). A new approach for solving resource constrained project scheduling problems using differential evolution algorithm. International journal of industrial engineering computations, 7(2), 205-216.
Fang, C., Kolisch, R., Wang, L., & Mu, C. (2015). An estimation of distribution algorithm and new computational results for the stochastic resource constrained project scheduling problem. Flexible Services and Manufacturing Journal, 27(4), 585–605.
Fang, C., Wang, L., & Xu, Y. (2010). An estimation of distribution algorithm for resource-constrained project scheduling problem. In 2010 Chinese Control and Decision Conference (pp. 265-270). IEEE.
Fathallahi, F., & Najafi, A. A. (2016). A hybrid genetic algorithm to maximize net present value of project cash flows in resource constrained project scheduling problem with fuzzy parameters. Scientia Iranica, 23(4), 1893-1903.
Frankola, T., Golub, M., & Jakobovic, D. (2008). Evolutionary Algorithms for the Resource Constrained Scheduling Problem. In ITI 2008-30th International Conference on Information Technology Interfaces (pp. 715-722). IEEE.
Gargiulo, F., & Quagliarella, D. (2012). Genetic Algorithms for the Resource Constrained Project Scheduling Problem. In 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI) (pp. 39-47). IEEE.
Gendreau, M., & Potvin, J.-Y. (2010). Handbook of metaheuristics (Vol. 2). New York: Springer.
Gonalves, J. F., Resende, M. G., & Mendes, J. J. (2011). A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem. Journal of Heuristics, 17(5), 467–486.
Goncharov, E. N., & Leonov, V. V. (2017). Genetic Algorithm for the Resource-Constrained Project Scheduling Problem. Automation and Remote Control, 78(6), 1101-1114.
Hartman, S. (2001). A comparative genetic algorithm for resource-constraint project scheduling. Naval Research Logistics, 49, 433-488.
Hartmann, S. (1998). A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling. Naval Research Logistics, 45(7), 733-750.
Hindi, K. S., Yang, H., & Fleszar, K. (2002). An Evolutionary Algorithm for Resource-Constrained Project Scheduling. IEEE Transactions on evolutionary computation, 6(5), 512-518.
Jedrzejowicz, P., & Ratajczak-Ropel, E. (2014). Reinforcement Learning strategies for A-Team solving the Resource-Constrained Project Scheduling Problem. Neurocomputing, 146, 301-307.
Jia, Q., & Seo, Y. (2013). An improved particle swarm optimization for the resource-constrained project scheduling problem. The International Journal of Advanced Manufacturing Technology, 67(9-12), 2627-2638.
Jia, Q., & Seo, Y. (2013). Solving resource-constrained project scheduling problems: Conceptual validation of FLP formulation and efficient permutation-based ABC computation. Computers & Operations Research, 40(8), 2037-2050.
Joshi, D., Mittal, M., Sharma, M. K., & Kumar, M. (2019). An effective teaching-learning based optimization algorithm for the multi-skill resource-constrained project scheduling problem. Journal of Modelling in Management, 14(4), 195-211.
Joy, J., Rajeev, S., & Narayanan, V. (2016). Particle swarm optimization for resource Constrained-project scheduling problem with varying resource levels. Procedia Technology, 25, 948-954.
Kadam, S. U., & Kadam, N. S. (2014). Solving Resource-Constrained Project Scheduling Problem by Genetic Algorithm. In 2014 2nd International Conference on Business and Information Management (ICBIM) (pp. 159-164). IEEE.
Kadam, S. U., & Mane, S. U. (2015). A Genetic-Local Search Algorithm Approach for Resource Constrained Project Scheduling Problem. In 2015 International Conference on Computing Communication Control and Automation (pp. 841-846). IEEE.
Kadri, R. L., & Boctor, F. F. (2018). An effcient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times. European Journal of Operational Research, 295(2), 454-462.
Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. In Proceedings of ICNN'95-international conference on neural networks (pp. 1942-1948). IEEE.
Khalili, S., Najafi, A. A., & Niaki, S. T. (2013). Bi-objective resource constrained project scheduling problem with makespan and net present value criteria: two meta-heuristic algorithms. The International Journal of Advanced Manufacturing Technology, 69(1-4), 617-626.
Kim, J.-L. (2007). Permutation-based elitist genetic algorithm using serial scheme for large-sized resource-constrained project schedulig. In 2007 Winter Simulation Conference (pp. 2112-2118). IEEE.
Kim, J.-L. (2009). Improved genetic algorithm for resource constrained scheduling of large projects. Canadian journal of civil engineering, 36(6), 1016-1027.
Kim, J.-L., & Ellis Jr, R. D. (2008). Permutation-Based Elitist Genetic Algorithm for Optimization of Large-Sized Resource-Constrained Project Scheduling. Journal of construction engineering and management, 134(11), 904-913.
Kim, K. W., Gen, M., & Yamazaki, G. (2003). Hybrid genetic algorithm with fuzzy logic for resource-constrained project scheduling. Applied soft computing, 2(3), 174-188.
Klimek, M. (2010). A genetic algorithm for the project scheduling with the resource constraints. Annales Universitatis Mariae Curie-Sklodowska, sectio AI--Informatica, 10(1), 117-130.
Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174(1), 23-37.
Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem. Information Sciences, 277, 680-693.
Kumar, M., Mittal, M. L., Soni, G., & Joshi, D. (2018). A hybrid TLBO-TS algorithm for integrated selection and scheduling of projects. Computers & Industrial Engineering, 119, 121-130.
Kumar, N., & Vidyarthi, D. P. (2016). A model for resource-constrained project scheduling using adaptive PSO. Soft Computing, 20(4), 1565-1580.
lazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource constraints: Classification and complexity. Discrete applied mathematics, 5(1), 11-24.
Li, F., Lai, C., & Shou, Y. (2011). Particle swarm optimization for preemptive project scheduling with resource constraints. In 2011 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 869-873). IEEE.
Li, M., Zhang, Y., Jiang, W., & Xie, J. (2009). A Particle Swarm Optimization Algorithm with Crossover for Resource Constrained Project Scheduling Problem. In 2009 IITA International Conference on Services Science, Management and Engineering (pp. 69-72). IEEE.
Liu, J., Liu, Y., Shi, Y., & Li, J. (2020). Solving Resource-Constrained Project Scheduling Problem via Genetic Algorithm. Journal of Computing in Civil Engineering, 34(2).
Lo, S.-T., Chen, R.-M., Shiau, D.-F., & Wu, C.-L. (2008). Using particle swarm optimization to solve resource-constrained scheduling p,roblems. In 2008 IEEE Conference on Soft Computing in Industrial Applications (pp. 38-43). IEEE.
Luo, S., Wang, C., & Wang, J. (2003). Ant Colony Optimization for Resource-Constrained Project Scheduling with Generalized Precedence Relations. In Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligenc (pp. 284-289). IEEE.
Mendes, J. J., Gonçalves, J. F., & Resende, M. G. (2009). A random key based genetic algorithm for the resource constrained project scheduling problem. Computers & Operations Research, 36(1), 92-109.
Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, 6(4), 333-346.
Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant Colony Optimization for Resource-Constrained Project Scheduling. IEEE transactions on evolutionary computation, 6(4), 333-346.
Mobini, M., Mobini, Z., & Rabbani, M. (2011). An Artificial Immune Algorithm for the project scheduling problem under resource constraints. Applied Soft Computing, 11(2), 1975-1982.
Montoya-Torres, J. R., Gutierrez-Franco, E., & Pirachican-Mayorga, C. (2010). Project scheduling with limited resources using a genetic algorithm. International Journal of Project Management, 28(6), 619-628.
Munlin, M. (2018). Solving resource-constrained project scheduling problem using metaheuristic algorithm. In 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE) (pp. 344-349). IEEE.
Munlin, M., & Anantathanavit, M. (2016). Hybrid Radius Particle Swarm Optimization. In 2016 IEEE Region 10 Conference (TENCON) (pp. 2180-2184). IEEE.
Myszkowski, P. B., Skowronski, M. E., Olech, L. P., & Oslizlo, K. (2015). Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem. Soft Computing, 19(12), 3599-3619.
Nasiri, M. M. (2013). A pseudo particle swarm optimization for the RCPSP. The International Journal of Advanced Manufacturing Technology, 65(5-8), 909-918.
Ortiz-Pimiento, N. R., & Diaz-Serna, F. J. (2018). The project scheduling problem with non-deterministic activities duration: A literature review. Journal of Industrial Engineering and Management (JIEM), 11(1), 116-134.
Pan, N.-H., & Lin, Y.-Y. (2011). Using hybrid simulated annealing algorithm in resource constrained project scheduling problem. Journal of Statistics and Management Systems, 14(3), 555-582.
Pan, N.-H., Hsaio, P.-W., & Chen, K.-Y. (2008). A study of project scheduling optimization using Tabu Search algorithm. Engineering Applications of Artificial Intelligence, 21(7), 1101–1112.
Pan, X., & Chen, H. (2010). A Multi-Agent Social Evolutionary Algorithm for Resource-Constrained Project scheduling. In 2010 International Conference on Computational Intelligence and Security (pp. 209-213). IEEE.
Pan, X., & Chen, H. (2010). A Multi-Agent Social Evolutionary Algorithm for Resource-Constrained Project Scheduling. In 2010 International Conference on Computational Intelligence and Security (pp. 209-213). IEEE.
Paraskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G. (2012). Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm. Expert Systems with Applications, 39(4), 3983–3994.
Peng, W., & Wei, Y. (2008). PSO for Solving RCPSP. In 2008 Chinese control and decision conference (pp. 818-822). IEEE.
Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The Bees Algorithm- A Novel Tool for Complex Optimisation Problems. In Intelligent production machines and systems (pp. 454-459). Elsevier.
Proon, S., & Jin, M. (2011). A Genetic Algorithm with Neighborhood Search for the Resource-Constrained Project Scheduling Problem. Naval Research Logistics (NRL), 58(2), 73-82.
Quoc, H. D., The, L. N., Doan, C. N., & Thanh, T. P. (2020). New Effective Differential Evolution Algorithm for the Project Scheduling Problem. In 2020 2nd International Conference on Computer Communication and the Internet (ICCCI) (pp. 150-157). IEEE.
Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching–learning-based optimization : A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315.
Ren, Y. H., Kong, D. C., & Peng, W. L. (2011). A Genetic Algorithm based Solution with Schedule Mode for RCPSP. In Advanced Materials Research (pp. 1802-1805). Trans Tech Publ.
Roy, B., & Sen, A. K. (2019). Meta-heuristic Techniques to Solve Resource-Constrained Project Scheduling Problem. In International conference on innovative computing and communications (pp. 93-99). Springer.
Sadeghi, A., Kalanaki, A., Noktehdan, A., Samghabadi, A. S., & Barzinpour, F. (2011). Using Bees Algorithm to Solve the Resource Constrained Project Scheduling Problem in PSPLIB. In International Conference on Theoretical and Mathematical Foundations of Computer Science (pp. 486-494). Berlin, Heidelberg: Springer.
Sakalauskas, L. a. (2006). Optimization of resource constrained project schedules by genetic algorithm based on the job priority list. Information technology and control, 35(4), 412-419.
Sakalauskas, L., & Felinskas, G. (2006). Optimization of Resource-Constrained Project Schedules by Simulated Annealing and Variable Neighborhood Search. Technological and economic development of economy, 12(4), 307-313.
Sallam, K. M., Chakrabortty, R. K., & Ryan, M. J. (2019). A Hybrid Differential Evolution with Cuckoo Search for Solving Resource Constrained Project Scheduling Problems. In 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1344-1348). IEEE.
Sanaei, P., Akbari, R., Zeighami, V., & Shams, S. (2013). Using Firefly Algorithm to Solve Resource Constrained Project Scheduling Problem. In Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012) (pp. 417-428). Springer.
Shan, M., Wu, J., & Peng, D. (2007). Particle Swarm and Ant Colony Algorithms Hybridized for Multi-mode Resource-constrained Project Scheduling Problem with Minimum Time Lag. In 2007 International Conference on Wireless Communications, Networking and Mobile Computing (pp. 5898-5902). IEEE.
Shi, Y.-j., Qu, F.-Z., Chen, W., & Li, B. (2010). An Artificial Bee Colony with Random Key for Resource-Constrained Project Scheduling. In Life system modeling and intelligent computing (pp. 148-157). Berlin, Heidelberg: Springer.
Shou, Y. (2007). A Bi-directional Ant colony algorithm for resource constrained project scheduling. In 2007 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 1027-1031). IEEE.
Shou, Y., Li, Y., & Lai, C. (2015). Hybrid particle swarm optimization for preemptive resource-constrained project scheduling. Neurocomputing, 148, 122–128.
Skowroński, M. E., Myszkowski, P. B., Adamski, M., & Kwiatek, P. (2013). Tabu Search approach for Multi–Skill Resource–Constrained Project Scheduling Problem. In 2013 Federated Conference on Computer Science and Information Systems (pp. 153-158). IEEE.
Sprecher, A., Kolisch, R., & Drexl, A. (1995). Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. European Journal of Operational Research, 80(1), 94-102.
Stiti, C., & Driss, O. B. (2019). A new approach for the multi-site resource-constrained project scheduling problem. Procedia Computer Science, 164, 478-484.
Tahooneh, A., & Ziarati, K. (2011). Using Artificial Bee Colony to Solve Stochastic Resource Constrained Project Scheduling Problem. In International Conference in Swarm Intelligence (pp. 293-302). Berlin, Heidelberg: Springer.
Tchomte, S. K., & Gourgand, M. (2009). Particle swarm optimization : A study of particle displacement for solving continuous and combinatorial optimization problems. International Journal of Production Economics, 121(1), 57-67.
Thammano, A., & Phu-Ang, A. (2012). A hybrid evolutionary algorithm for the resource-constrained project scheduling problem. Artificial Life and Robotics, 17(2), 312–316.
Thomas, P. R., & Salhi, S. (1998). A Tabu Search Approach for the Resource Constrained Project Scheduling Problem. Journal of Heuristics, 4(2), 123-139.
Thomas, P. R., & Salhi, S. (1998). A Tabu Search Approach for the Resource Constrained Project Scheduling Problem. Journal of Heuristics, 4, 123-139.
Tseng, L.-Y., & Chen, S.-C. (2006). A hybrid metaheuristic for the resource-constrained project scheduling problem. European Journal of Operational Research, 175(2), 707-721.
Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 185(2), 495-508.
Wang, H., Li, T., & Lin, D. (2010). Efficient Genetic Algorithm for Resource-Constrained Project Scheduling Problem. Transactions of Tianjin University, 16(5), 376–382.
Wang, H., Lin, D., & Li, M. (2005). A Genetic Algorithm for Solving Fuzzy Resource-Constrained Project Scheduling. In International Conference on Natural Computation (pp. 171-180). Berlin, Heidelberg: Springer.
Wang, L., & Fang, C. (2012). A hybrid estimation of distribution algorithm for solving the resource-constrained project scheduling problem. Journal of Expert Systems with Applications, 39, 2451-2460.
Wang, Q., & Qi, J. (2009). Improved Particle Swarm Optimization for RCP Scheduling Problem. In The Sixth International Symposium on Neural Networks (ISNN 2009) (pp. 49-57). Berlin: Springer.
Yu, X., Zhan, D., Nie, L., & Xu, X. (2009). A Novel Genetic Simulated Annealing Algorithm for the Resource-Constrained Project Scheduling Problem. In 2009 International Workshop on Intelligent Systems and Applications (pp. 1-4). IEEE.
Yuan, Y., Wang, K., & Ding, L. (2009, August). A Solution to Resource-Constrained Project Scheduling Problem. In 2009 Ninth International Conference on Hybrid Intelligent Systems (Vol. 1, pp. 446-450). IEEE.
Zamani, R. (2013). A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem. European Journal of Operational Research, 229(2), 552–559.
Zeighami, V., Akbari, R., Akbari, I., & Biletskiy, Y. (2012). An ABC-Genetic method to solve resource constrained project scheduling problem. Artificial Intelligence Research (AIR) Journal, SCIEDU, Canada, 1(2), 185-197.
Zhang, H., & Li, H. :. (2006). Permutation-based particle swarm optimization for resource-constrained project scheduling. Journal of computing in civil engineering, 20(2), 141-149.
Zhang, H., Li, X., Li, H., & Huang, F. (2005). Particle swarm optimization-based schemes for resource-constrained project scheduling. Automation in construction, 14(3), 393-404.
Zhang, K., Zhao, G., & Jiang, J. (2009). Particle Swarm Optimization Method for Resource-Constrained Project Scheduling Problem. In 2009 9th International Conference on Electronic Measurement & Instruments (pp. 4-792). IEEE.
Zheng, H.-y., & Wang, L. (2015). An effective teaching–learning-based optimisation algorithm for RCPSP with ordinal interval numbers. International Journal of Production Research, 53(6), 1777-1790.
Zheng, H.-y., Wang, L., & Wang, S.-y. (2014). A Co-evolutionary Teaching-learning-based Optimization Algorithm for Stochastic RCPSP. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 587-594). IEEE.
Zheng, H.-y., Wang, L., & Zheng, X.-l. (2017). Teaching–learning-based optimization algorithm for multi-skill resource constrained project scheduling problem. Soft Computing, 21(6), 1537-1548.
Zhou, Y., Guo, Q., & Gan, R. (2009). Improved ACO Algorithm for Resource-Constrained Project Scheduling Problem. In 2009 international conference on artificial intelligence and computational intelligence (Vol. 3, pp. 358-365). IEEE.
Zhu, J., Li, X., & Shen, W. (2011). Effective genetic algorithm for resource-constrained project scheduling with limited preemptions. International Journal of Machine Learning and Cybernetics, 2(2), 55–65.
Ziarati, K., Akbari, R., & Zeighami, V. (2011). On the performance of bee algorithms for resource-constrained project scheduling problem. Applied Soft Computing, 11(4), 3720–3733.