How to cite this paper
Singamsetty, P., Thenepalle, J & Uruturu, B. (2021). Solving open travelling salesman subset-tour problem through a hybrid genetic algorithm.Journal of Project Management, 6(4), 209-222.
Refrences
Ausiello, G., Bonifaci, V., Leonardi, S., Marchetti-Spaccamela, A., & Gonzalez, T. F. (2018). Prize Collecting Traveling Salesman and Related Problems.
Bahaabadi, M.R., Mohaymany, A.S., & Babaei, M. (2012). An Efficient crossover operator for travelling salesman prob-lem. International Journal of Optimization in Civil Engineering 2(4), 607–619.
Balas, E. (1989). The prize collecting traveling salesman problem. Networks, 19(6), 621-636.
Chieng, H. H., & Wahid, N. (2014). A performance comparison of genetic algorithm’s mutation operators in n-cities open loop travelling salesman problem. In Recent Advances on Soft Computing and Data Mining (pp. 89-97). Springer, Cham.
Gensch, D. H. (1978). An industrial application of the traveling salesman's subtour problem. AIIE Transactions, 10(4), 362-370.
Giardini, G., & Kalmar-Nagy, T. (2011). Genetic algorithm for combinatorial path planning: the subtour problem. Mathe-matical Problems in Engineering, 2011.
Goldenberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Newyork.
Hussain, A., Muhammad, Y. S., Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A., & Gani, S. (2017). Genetic algo-rithm for traveling salesman problem with modified cycle crossover operator. Computational intelligence and neuro-science, 2017.
Ibaraki, T. (1973). Algorithms for obtaining shortest paths visiting specified nodes. Siam Review, 15(2), 309-317.
Laporte, G., Mercure, H., & Norbert, Y. (1984). Optimal tour planning with specified nodes. RAIRO-Operations Research-Recherche Opérationnelle, 18(3), 203-210.
Liu, C., & Kroll, A. (2016). Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems. SpringerPlus, 5(1), 1361.
Maredia, A., & Pepper, R. (2010). History, Analysis, and Implementation of Traveling Salesman Problem (TSP) and Re-lated Problems. Department of Computer and Mathematical Sciences, University of Houston-Downtown.
Matai, R., Singh, S. P., & Mittal, M. L. (2010). Traveling salesman problem: an overview of applications, formulations, and solution approaches. Traveling salesman problem, theory and applications, 1.
Mittenthal, J., & Noon, C. E. (1992). An insert/delete heuristic for the travelling salesman subset-tour problem with one additional constraint. Journal of the Operational Research Society, 43(3), 277-283.
Pandiri, V., & Singh, A. (2020). Two multi-start heuristics for the k-traveling salesman problem. OPSEARCH, 57(4), 1164-1204.
Saksena, J. P., & Kumar, S. (1966). The routing problem with “K” specified nodes. Operations Research, 14(5), 909-913.
Stetsyuk, P. I. (2016). Problem statements for k-node shortest path and k-node shortest cycle in a complete graph. Cyber-netics and Systems Analysis, 52(1), 71-75.
Venkatesh, P., Srivastava, G., & Singh, A. (2018). A general variable neighborhood search algorithm for the k-traveling salesman problem. Procedia computer science, 143, 189-196.
Verweij, B., & Aardal, K. (2003). The merchant subtour problem. Mathematical programming, 94(2-3), 295-322.
Westerlund, A., Göthe-Lundgren, M., & Larsson, T. (2006). A stabilized column generation scheme for the traveling salesman subtour problem. Discrete Applied Mathematics, 154(15), 2212-2238.
Bahaabadi, M.R., Mohaymany, A.S., & Babaei, M. (2012). An Efficient crossover operator for travelling salesman prob-lem. International Journal of Optimization in Civil Engineering 2(4), 607–619.
Balas, E. (1989). The prize collecting traveling salesman problem. Networks, 19(6), 621-636.
Chieng, H. H., & Wahid, N. (2014). A performance comparison of genetic algorithm’s mutation operators in n-cities open loop travelling salesman problem. In Recent Advances on Soft Computing and Data Mining (pp. 89-97). Springer, Cham.
Gensch, D. H. (1978). An industrial application of the traveling salesman's subtour problem. AIIE Transactions, 10(4), 362-370.
Giardini, G., & Kalmar-Nagy, T. (2011). Genetic algorithm for combinatorial path planning: the subtour problem. Mathe-matical Problems in Engineering, 2011.
Goldenberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Newyork.
Hussain, A., Muhammad, Y. S., Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A., & Gani, S. (2017). Genetic algo-rithm for traveling salesman problem with modified cycle crossover operator. Computational intelligence and neuro-science, 2017.
Ibaraki, T. (1973). Algorithms for obtaining shortest paths visiting specified nodes. Siam Review, 15(2), 309-317.
Laporte, G., Mercure, H., & Norbert, Y. (1984). Optimal tour planning with specified nodes. RAIRO-Operations Research-Recherche Opérationnelle, 18(3), 203-210.
Liu, C., & Kroll, A. (2016). Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems. SpringerPlus, 5(1), 1361.
Maredia, A., & Pepper, R. (2010). History, Analysis, and Implementation of Traveling Salesman Problem (TSP) and Re-lated Problems. Department of Computer and Mathematical Sciences, University of Houston-Downtown.
Matai, R., Singh, S. P., & Mittal, M. L. (2010). Traveling salesman problem: an overview of applications, formulations, and solution approaches. Traveling salesman problem, theory and applications, 1.
Mittenthal, J., & Noon, C. E. (1992). An insert/delete heuristic for the travelling salesman subset-tour problem with one additional constraint. Journal of the Operational Research Society, 43(3), 277-283.
Pandiri, V., & Singh, A. (2020). Two multi-start heuristics for the k-traveling salesman problem. OPSEARCH, 57(4), 1164-1204.
Saksena, J. P., & Kumar, S. (1966). The routing problem with “K” specified nodes. Operations Research, 14(5), 909-913.
Stetsyuk, P. I. (2016). Problem statements for k-node shortest path and k-node shortest cycle in a complete graph. Cyber-netics and Systems Analysis, 52(1), 71-75.
Venkatesh, P., Srivastava, G., & Singh, A. (2018). A general variable neighborhood search algorithm for the k-traveling salesman problem. Procedia computer science, 143, 189-196.
Verweij, B., & Aardal, K. (2003). The merchant subtour problem. Mathematical programming, 94(2-3), 295-322.
Westerlund, A., Göthe-Lundgren, M., & Larsson, T. (2006). A stabilized column generation scheme for the traveling salesman subtour problem. Discrete Applied Mathematics, 154(15), 2212-2238.