dependent Weibull deterioration and ramp type demand rate where
production and demand are time dependent. The proposed model of this
paper considers economic order quantity under two different cases. The
implementation of the proposed model is illustrated using some
numerical examples. Sensitivity analysis is performed to show the
effect of changes in the parameters on the optimum solution.
How to cite this paper
Tripathy, C & Mishra, U. (2011). An EOQ model with time dependent Weibull deterioration and ramp type demand.International Journal of Industrial Engineering Computations , 2(2), 307-318.
Refrences
Abdul, I., & Murata, A. (2011). An inventory model for deteriorating items with varying demand pattern and unknown time horizon. International Journal of Industrial Engineering Computations, 2(1), 61-86.
Bahari-Kashani, H. (1989). Replenishment schedule for deteriorating items with time proportional demand. Journal of the Operational Research Society, 40, 75-81.
Chakrabarti, T., Giri, B. C. & Chaudhuri, K. S. (1998). An EOQ model for items Weibull distribution deterioration shortages and trended demand-an extension of Philips model. Computers and Operations Research, 25 (7/8), 649-657.
Convert, R. P. & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 5, 323-326.
Dave, U. (1986). An order level inventory model for deteriorating items with variable instantaneous demand and discrete opportunities for replenishment. Opsearch, 23, 1986, 244-249.
Deb, M. & Chaudhuri, K. S. (1987). A note on the heuristic for replenishment of trended inventories considering shortages. Journal of the Operational Research Society, 38, 1987, 459-463.
Deng, P. S., Lin, R, H. J., & Chu, P. (2007). A note on the inventory models for deteriorating items with ramp type demand rate, European Journal of Operational Research, 178, 112-120.
Donaldson, W. A. (1977). Inventory replenishment policy for a linear trend in demand an- analytical solution. Operational Research Quarterly, 28, 663–670.
Fujiwara, O. (1993). EOQ models for continuously deteriorating products using linear and exponential penalty costs. European Journal of Operational Research, 70, 104–114.
Ghare, P. M., Schrader, G. F. (1963). An inventory model for exponentially deteriorating items. Journal of Industrial Engineering, 14, 238–243.
Goswami, A. & Chaudhuri, K. S. (1992). Variation of order level inventory models for deteriorating items. International Journal of Production Economics, 27, 111-117.
Goswami, A. & Chaudhuri, K. S. (1991). An EOQ model for deteriorating items with shortages and a linear trend in demand. Journal of the Operational Research Society, 42 (12), 1105-1110.
Goyal, S. K. (1988). A heuristic for replenishment of trends in inventories considering shortages. Journal of the Operational Research Society, 39, 885-887.
Hariga, M. A. & Benkherouf, L. (1994). Optimal and heuristic inventory replenishment models for deteriorating items with exponential time-varying demand. European Journal of Operational Research, 79, 123-137.
Jalan, A. K., Giri, R. R. & Chaudhuri, K. S. (1996). EOQ model for items with Weibull distribution deterioration shortages and trended demand. International Journal of Systems Science, 27, 851-855.
Mandal, B. & Pal, A. K. (1998). Order level inventory system with ramp type demand rate for deteriorating items. Journal of Interdisciplinary Mathematics, 1 (1), 49-66.
Mcdonald, J. (1979). Inventory replenishment policies-computational solutions. Journal of the Operational Research Society, 30 (10), 933-936.
Mishra, R. B. (1975). Optimum production lot-size model for a system with deteriorating inventory. International Journal of Production Research, 13, 495-505.
Mitra, A., Cox, J. R. and JESSE, R. R. (1984). A note on deteriorating order quantities with a linear trend in demand. Journal of the Operational Research Society, 35, 141-144.
Murudeshwar, T. M. (1988). Inventory replenishment policy for linearly increasing demand considering shortages-an optimal solution. Journal of the Operational Research Society, 39, 687-692.
Nahmias, S. (1982). Perishable inventory theory-a review. Operations Research, 30, 680-708.
Raafat, F. (1991). Survey of literature on continuously deteriorating inventory model. Journal of the Operational Research Society, 42(1), 27-37.
Ritchie, E. (1984). The EOQ for linear increasing demand-a simple optimal solution. Journal of the Operational Research Society, 35, 949-952.
Roychowdhury, M. & Chaudhuri, K. S. (1983). An order level inventory model for deteriorating items with finite rate of replenishment. Opsearch, 20, 99-106.
Panda, S., Senapati, S., & Basu, M. (2008). Optimal replenishment policy for perishable seasonal products in a season with ramp-type time dependent demand, Computers & Industrial Engineering, 54, 301-314.
Shah, Y. K. & Jaiswal, M. C. (1977). An order-level inventory model for a system with constant rate of deterioration. Opsearch, 14, 174-184.
Su, C. T., Tong, L. I. & Liao, H. C. (1996). An inventory model under inflation for stock-dependent consumption rate and exponential decay. Opsearch, 33 (2), 72-82.
Wee, H. M. (1995). A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Computers and Operations Research, 22(3), 345-356.
Whitin, T. M. (1957). Theory of Inventory Management. Princeton University Press, Princeton, NJ.
Bahari-Kashani, H. (1989). Replenishment schedule for deteriorating items with time proportional demand. Journal of the Operational Research Society, 40, 75-81.
Chakrabarti, T., Giri, B. C. & Chaudhuri, K. S. (1998). An EOQ model for items Weibull distribution deterioration shortages and trended demand-an extension of Philips model. Computers and Operations Research, 25 (7/8), 649-657.
Convert, R. P. & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 5, 323-326.
Dave, U. (1986). An order level inventory model for deteriorating items with variable instantaneous demand and discrete opportunities for replenishment. Opsearch, 23, 1986, 244-249.
Deb, M. & Chaudhuri, K. S. (1987). A note on the heuristic for replenishment of trended inventories considering shortages. Journal of the Operational Research Society, 38, 1987, 459-463.
Deng, P. S., Lin, R, H. J., & Chu, P. (2007). A note on the inventory models for deteriorating items with ramp type demand rate, European Journal of Operational Research, 178, 112-120.
Donaldson, W. A. (1977). Inventory replenishment policy for a linear trend in demand an- analytical solution. Operational Research Quarterly, 28, 663–670.
Fujiwara, O. (1993). EOQ models for continuously deteriorating products using linear and exponential penalty costs. European Journal of Operational Research, 70, 104–114.
Ghare, P. M., Schrader, G. F. (1963). An inventory model for exponentially deteriorating items. Journal of Industrial Engineering, 14, 238–243.
Goswami, A. & Chaudhuri, K. S. (1992). Variation of order level inventory models for deteriorating items. International Journal of Production Economics, 27, 111-117.
Goswami, A. & Chaudhuri, K. S. (1991). An EOQ model for deteriorating items with shortages and a linear trend in demand. Journal of the Operational Research Society, 42 (12), 1105-1110.
Goyal, S. K. (1988). A heuristic for replenishment of trends in inventories considering shortages. Journal of the Operational Research Society, 39, 885-887.
Hariga, M. A. & Benkherouf, L. (1994). Optimal and heuristic inventory replenishment models for deteriorating items with exponential time-varying demand. European Journal of Operational Research, 79, 123-137.
Jalan, A. K., Giri, R. R. & Chaudhuri, K. S. (1996). EOQ model for items with Weibull distribution deterioration shortages and trended demand. International Journal of Systems Science, 27, 851-855.
Mandal, B. & Pal, A. K. (1998). Order level inventory system with ramp type demand rate for deteriorating items. Journal of Interdisciplinary Mathematics, 1 (1), 49-66.
Mcdonald, J. (1979). Inventory replenishment policies-computational solutions. Journal of the Operational Research Society, 30 (10), 933-936.
Mishra, R. B. (1975). Optimum production lot-size model for a system with deteriorating inventory. International Journal of Production Research, 13, 495-505.
Mitra, A., Cox, J. R. and JESSE, R. R. (1984). A note on deteriorating order quantities with a linear trend in demand. Journal of the Operational Research Society, 35, 141-144.
Murudeshwar, T. M. (1988). Inventory replenishment policy for linearly increasing demand considering shortages-an optimal solution. Journal of the Operational Research Society, 39, 687-692.
Nahmias, S. (1982). Perishable inventory theory-a review. Operations Research, 30, 680-708.
Raafat, F. (1991). Survey of literature on continuously deteriorating inventory model. Journal of the Operational Research Society, 42(1), 27-37.
Ritchie, E. (1984). The EOQ for linear increasing demand-a simple optimal solution. Journal of the Operational Research Society, 35, 949-952.
Roychowdhury, M. & Chaudhuri, K. S. (1983). An order level inventory model for deteriorating items with finite rate of replenishment. Opsearch, 20, 99-106.
Panda, S., Senapati, S., & Basu, M. (2008). Optimal replenishment policy for perishable seasonal products in a season with ramp-type time dependent demand, Computers & Industrial Engineering, 54, 301-314.
Shah, Y. K. & Jaiswal, M. C. (1977). An order-level inventory model for a system with constant rate of deterioration. Opsearch, 14, 174-184.
Su, C. T., Tong, L. I. & Liao, H. C. (1996). An inventory model under inflation for stock-dependent consumption rate and exponential decay. Opsearch, 33 (2), 72-82.
Wee, H. M. (1995). A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Computers and Operations Research, 22(3), 345-356.
Whitin, T. M. (1957). Theory of Inventory Management. Princeton University Press, Princeton, NJ.