How to cite this paper
Soni, H & Patel, K. (2012). Optimal pricing and inventory policies for non-instantaneous deteriorating items with permissible delay in payment: Fuzzy expected value model.International Journal of Industrial Engineering Computations , 3(3), 281-300.
Refrences
Abad, P. L. (1996). Optimal pricing and lot-sizing under conditions perishability and partial backordering, Management Science, 42, 1093 – 1104.
Abad, P. L. (2001). Optimal price and order size for a reseller under partial backordering, Computers and Operations Research, 28, 53 – 65.
Chang, S. C., and Yao, J. S. (1998). Economic reorder point for fuzzy backorder quantity, European Journal of Operational Research, 109, 183 – 202.
Chen, L. H., and Ouyang, L. Y. (2006). Fuzzy inventory model for deteriorating items with permissible delay in payments, Applied Mathematics and Computation, 182, 711 – 726.
Chen, S. H., Wang, C. C., and Ramer, A. (1996). Backorder fuzzy inventory model under function principle, Information Science, 95, 71 – 79.
De, S. K., & Goswami, A. (2006). An EOQ model with fuzzy inflation rate and fuzzy deterioration rate when a delay in payment is permissible. International Journal of Systems Science, 37, 323–335.
Dye, C. Y. (2007). Joint Pricing and Ordering Policy for Deteriorating Inventory with Partial Backlogging, Omega, 35, 184 – 189.
Geetha, K. V., and Uthayakumar, R. (2010). Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments, Journal of Computational and Applied Mathematics, 233, 2492 – 2505.
Kao, C., and Hsu, W. K. (2002). Lot size-reorder point inventory model with fuzzy demand, Computer and Mathematic with Application, 43, 1291 – 1302.
Liu B, Uncertainty Theory, 2nd ed., Springer-Verlag, Berlin, 2007.
Liu, B., and Liu, Y. K. (2001). Expected value of fuzzy variable and fuzzy expected value model, IEEE Transactions on Fuzzy Systems, 12, 253 – 262.
Lee, H. M., and Yao, J. S. (1999). Economic order quantity in fuzzy sense for inventory without backorder model, Fuzzy Sets and Systems, 105, 13 – 31.
Ouyang, L. Y., Wu, K. S., and Yang, C. T. (2006). A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments, Computers & Industrial Engineering, 51, 637 – 651.
Park, K. S. (1987). Fuzzy-set Theoretic interpretation of economic order quantity, IEEE Transactions System, Man, Cybernetics, SMC – 17, 1082 – 1084.
Roy, A., Kar, S., and Maiti, M. (2008). A deteriorating multi-item inventory model with fuzzy costs and resources based on two different defuzzification techniques, Applied Mathematical Modelling, 32, 208 – 223.
Roy, T. K., and Maiti, M. (1997). A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity, European Journal of Operational Research, 99, 425 – 432.
Soni, H., and Shah, N. H. (2011). Optimal Policy For Fuzzy Expected Value Production Inventory Model with imprecise production preparation-time, International Journal of Machine Learning and Cybernetics, 2, 219 – 224.
Wang, X., Tang, W., and Zhao, R. (2007). Fuzzy Economic Order Quantity Inventory Models without Backordering, Tsinghua Science and Technology, 12, 91 – 96.
Wang, X., and Tang, W. (2009). Fuzzy EPQ inventory models with backorder, Journal of System Science and Complexity, 22, 313 – 323.
Abad, P. L. (2001). Optimal price and order size for a reseller under partial backordering, Computers and Operations Research, 28, 53 – 65.
Chang, S. C., and Yao, J. S. (1998). Economic reorder point for fuzzy backorder quantity, European Journal of Operational Research, 109, 183 – 202.
Chen, L. H., and Ouyang, L. Y. (2006). Fuzzy inventory model for deteriorating items with permissible delay in payments, Applied Mathematics and Computation, 182, 711 – 726.
Chen, S. H., Wang, C. C., and Ramer, A. (1996). Backorder fuzzy inventory model under function principle, Information Science, 95, 71 – 79.
De, S. K., & Goswami, A. (2006). An EOQ model with fuzzy inflation rate and fuzzy deterioration rate when a delay in payment is permissible. International Journal of Systems Science, 37, 323–335.
Dye, C. Y. (2007). Joint Pricing and Ordering Policy for Deteriorating Inventory with Partial Backlogging, Omega, 35, 184 – 189.
Geetha, K. V., and Uthayakumar, R. (2010). Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments, Journal of Computational and Applied Mathematics, 233, 2492 – 2505.
Kao, C., and Hsu, W. K. (2002). Lot size-reorder point inventory model with fuzzy demand, Computer and Mathematic with Application, 43, 1291 – 1302.
Liu B, Uncertainty Theory, 2nd ed., Springer-Verlag, Berlin, 2007.
Liu, B., and Liu, Y. K. (2001). Expected value of fuzzy variable and fuzzy expected value model, IEEE Transactions on Fuzzy Systems, 12, 253 – 262.
Lee, H. M., and Yao, J. S. (1999). Economic order quantity in fuzzy sense for inventory without backorder model, Fuzzy Sets and Systems, 105, 13 – 31.
Ouyang, L. Y., Wu, K. S., and Yang, C. T. (2006). A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments, Computers & Industrial Engineering, 51, 637 – 651.
Park, K. S. (1987). Fuzzy-set Theoretic interpretation of economic order quantity, IEEE Transactions System, Man, Cybernetics, SMC – 17, 1082 – 1084.
Roy, A., Kar, S., and Maiti, M. (2008). A deteriorating multi-item inventory model with fuzzy costs and resources based on two different defuzzification techniques, Applied Mathematical Modelling, 32, 208 – 223.
Roy, T. K., and Maiti, M. (1997). A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity, European Journal of Operational Research, 99, 425 – 432.
Soni, H., and Shah, N. H. (2011). Optimal Policy For Fuzzy Expected Value Production Inventory Model with imprecise production preparation-time, International Journal of Machine Learning and Cybernetics, 2, 219 – 224.
Wang, X., Tang, W., and Zhao, R. (2007). Fuzzy Economic Order Quantity Inventory Models without Backordering, Tsinghua Science and Technology, 12, 91 – 96.
Wang, X., and Tang, W. (2009). Fuzzy EPQ inventory models with backorder, Journal of System Science and Complexity, 22, 313 – 323.