How to cite this paper
Muñoz-Guevara, J., Toro-Ocampo, E & Vélez-Galleg, M. (2024). Robotic assembly systems planning and scheduling problems: A review.International Journal of Industrial Engineering Computations , 15(4), 845-870.
Refrences
Abd, K., Abhary, K., & Marian, R. (2011a). Scheduling and performance evaluation of robotic flexible assembly cells under different dispatching rules. https://doi.org/10.5729/ame.vol2.issue1.31
Abd, K., Abhary, K., & Marian, R. (2011b). A scheduling framework for robotic flexible assembly cells. Applied Science and Engineering Progress, 4(1), 31-38. https://doi.org/https://ph02.tci-thaijo.org/index.php/ijast/article/view/67377
Abd, K., Abhary, K., & Marian, R. (2012). Intelligent modeling of scheduling robotic flexible assembly cells using fuzzy logic. https://doi.org/https://www.researchgate.net/publication/262398812_
Abd, K., Abhary, K., & Marian, R. (2016). Multi-objective optimisation of dynamic scheduling in robotic flexible assembly cells via fuzzy-based Taguchi approach. Computers & Industrial Engineering, 99, 250-259. https://doi.org/https://doi.org/10.1016/j.cie.2016.07.028
Abd, K. K. (2015). Intelligent scheduling of robotic flexible assembly cells. Springer. https://doi.org/https://doi-org.ezproxy.utp.edu.co/10.1007/978-3-319-26296-3
Abd, K. K. (2016). Development of an Intelligent Methodology for Scheduling RFAC. In Intelligent Scheduling of Robotic Flexible Assembly Cells (pp. 31-47). Springer. https://doi.org/http://dx.doi.org/10.1007/978-3-319-26296-3_3
Alfadhlani, A. M. r., Toha, I. S., & Samadhi, T. A. (2019). Automatic Precedence Constraint Generation for Assembly Sequence Planning using a Three-Dimensional Solid Model. https://doi.org/https://doi.org/10.14716/ijtech.v10i2.3064
Allahverdi, A., Pesch, E., Pinedo, M., & Werner, F. (2018). Scheduling in manufacturing systems: new trends and perspectives. https://doi.org/https://doi.org/10.1080/00207543.2018.1504252
Andrzejewski, K., Cooper, M., Griffiths, C., & Giannetti, C. (2018). Optimisation process for robotic assembly of electronic components. The International Journal of Advanced Manufacturing Technology, 99, 2523-2535. https://doi.org/https://doi.org/10.1007/s00170-018-2645-y
Basran, J. S., Petriu, E. M., & Petriu, D. C. (1997). Flexible agent-based robotic assembly cell. Proceedings of International Conference on Robotics and Automation,
Blazewicz, J. (2013). Scheduling computer and manufacturing processes. https://doi.org/https://doi.org/10.1057/palgrave.jors.2600793
Boschetti, G., Faccio, M., Milanese, M., & Minto, R. (2021). C-ALB (Collaborative Assembly Line Balancing): a new approach in cobot solutions. The International Journal of Advanced Manufacturing Technology, 116, 3027-3042. https://doi.org/https://doi.org/10.1007/s00170-021-07565-7
Boysen, N., Fliedner, M., & Scholl, A. (2009). Production planning of mixed-model assembly lines: overview and extensions. Production Planning and Control, 20(5), 455-471. https://doi.org/https://doi.org/10.1016/S0360-8352(01)00065-1
Brucker, P. (2006). Scheduling algorithms (Vol. 50).
Bukchin, J., & Tzur, M. (2000). Design of flexible assembly line to minimize equipment cost. Iie transactions, 32(7), 585-598. https://doi.org/https://doi.org/10.1023/A:1007646714909
Cai, M., Liang, R., Luo, X., & Liu, C. (2022). Task allocation strategies considering task matching and ergonomics in the human-robot collaborative hybrid assembly cell. International Journal of Production Research, 1-20. https://doi.org/https://doi.org/10.1080/00207543.2022.2147234
Capacho Betancourt, L., & Pastor Moreno, R. (2004). Generación de secuencias de montaje y equilibrado de líneas. https://doi.org/http://hdl.handle.net/2117/509
Caprihan, R., Kumar, A., & Stecke, K. E. (2013). Evaluation of the impact of information delays on flexible manufacturing systems performance in dynamic scheduling environments. The International Journal of Advanced Manufacturing Technology, 67(1-4), 311-338. https://doi.org/https://doi.org/10.1007/s00170-013-4755-x
Carlson, J. S., Spensieri, D., Söderberg, R., Bohlin, R., & Lindkvist, L. (2013). Non-nominal path planning for robust robotic assembly. Journal of Manufacturing Systems, 32(3), 429-435. https://doi.org/https://doi.org/10.1016/j.jmsy.2013.04.013
Casalino, A., Zanchettin, A. M., Piroddi, L., & Rocco, P. (2019). Optimal scheduling of human–robot collaborative assembly operations with time petri nets. IEEE Transactions on Automation Science and Engineering, 18(1), 70-84. https://doi.org/https://doi.org/10.1109/TASE.2019.2932150
Chan, F. T., & Chan, H. K. (2004). A comprehensive survey and future trend of simulation study on FMS scheduling. Journal of Intelligent Manufacturing, 15(1), 87-102. https://doi.org/https://doi.org/10.1023/B:JIMS.0000010077.27141.be
Chang, H., & Li, T.-Y. (1995). Assembly maintainability study with motion planning. Proceedings of 1995 IEEE International Conference on Robotics and Automation,
Chen, J., & Lee, C. Y. (1999). General multiprocessor task scheduling. Naval Research Logistics (NRL), 46(1), 57-74. https://doi.org/https://doi.org/10.1002/(SICI)1520-6750(199902)46:13.0.CO;2-H
Chincholkar, A., & Chetty, O. K. (1996). Stochastic coloured Petri nets for modelling and evaluation, and heuristic rule base for scheduling of FMS. The International Journal of Advanced Manufacturing Technology, 12(5), 339-348. https://doi.org/https://doi.org/10.1007/BF01179809
Chutima, P. (2022). A comprehensive review of robotic assembly line balancing problem. Journal of Intelligent Manufacturing, 33(1), 1-34. https://doi.org/https://doi.org/10.1007/s10845-020-01641-7
Çil, Z. A., Li, Z., Mete, S., & Özceylan, E. (2020). Mathematical model and bee algorithms for mixed-model assembly line balancing problem with physical human–robot collaboration. Applied Soft Computing, 93, 106394. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106394
Çil, Z. A., Mete, S., & Ağpak, K. (2017). Analysis of the type II robotic mixed-model assembly line balancing problem. Engineering Optimization, 49(6), 990-1009. https://doi.org/https://doi.org/10.1080/0305215X.2016.1230208
Cortés, J., Jaillet, L., & Siméon, T. (2008). Disassembly path planning for complex articulated objects. IEEE Transactions on Robotics, 24(2), 475-481. https://doi.org/10.1109/TRO.2008.915464
Cottrez, F., & Van Brussel, H. (1989). SESFAC: A scheduling expert system for flexible assembly cells. Proceedings of the IEEE Intern. Conf. on Robotics and Automation,
Daoud, S., Chehade, H., Yalaoui, F., & Amodeo, L. (2014). Solving a robotic assembly line balancing problem using efficient hybrid methods. Journal of Heuristics, 20(3), 235-259. https://doi.org/https://doi.org/10.1007/s10732-014-9239-0
De Fazio, T., & Whitney, D. (1987). Simplified generation of all mechanical assembly sequences. IEEE Journal on Robotics and Automation, 3(6), 640-658. https://doi.org/10.1109/JRA.1987.1087132
Del Valle, C., & Camacho, E. (1996). Automatic assembly task assignment for a multirobot environment. Control engineering practice, 4(7), 915-921. https://doi.org/https://doi.org/10.1016/0967-0661(96)00089-5
Delchambre, A. (2012). Computer-aided assembly planning. Springer Science & Business Media.
Ferreira, C., Figueira, G., & Amorim, P. (2021). Scheduling human-robot teams in collaborative working cells. International Journal of Production Economics, 235, 108094. https://doi.org/https://doi.org/10.1016/j.ijpe.2021.108094
Framinan, J. M., Leisten, R., & García, R. R. (2014). Manufacturing scheduling systems. An integrated view on Models, Methods and Tools, 51-63. https://doi.org/https://doi.org/10.1007/978-1-4471-6272-8
French, S. (1982). Sequencing and scheduling. An Introduction to the Mathematics of the Job-shop. https://doi.org/https://doi.org/10.1002/net.3230130218
Ghandi, S., & Masehian, E. (2015). Review and taxonomies of assembly and disassembly path planning problems and approaches. Computer-Aided Design, 67, 58-86. https://doi.org/https://doi.org/10.1016/j.cad.2015.05.001
Glibert, P.-R., Coupez, D., Peng, Y., & Delchambre, A. (1990). Scheduling of a multi-robot assembly cell. Computer Integrated Manufacturing Systems, 3(4), 236-245. https://doi.org/https://doi.org/10.1016/0951-5240(90)90064-L
Göppert, A., Schukat, E., Burggräf, P., & Schmitt, R. H. (2021). Agile hybrid assembly systems: bridging the gap between line and matrix configurations. In Advances in Automotive Production Technology–Theory and Application (pp. 3-11). Springer. https://doi.org/https://doi.org/10.1007/978-3-662-62962-8_1
Greschke, P., Schönemann, M., Thiede, S., & Herrmann, C. (2014). Matrix structures for high volumes and flexibility in production systems. Procedia CIRP, 17, 160-165. https://doi.org/https://doi.org/10.1016/j.procir.2014.02.040
Gultekin, H., Akturk, M. S., & Karasan, O. E. (2008). Scheduling in robotic cells: process flexibility and cell layout. International Journal of Production Research, 46(8), 2105-2121. https://doi.org/ http://dx.doi.org/10.1080/00207540601100262
Gultekin, H., Coban, B., & Akhlaghi, V. E. (2018). Cyclic scheduling of parts and robot moves in m-machine robotic cells. Computers & Operations Research, 90, 161-172. https://doi.org/https://doi.org/10.1016/j.cor.2017.09.018
Hagemann, S., & Stark, R. (2020). An optimal algorithm for the robotic assembly system design problem: An industrial case study. CIRP Journal of Manufacturing Science and Technology, 31, 500-513. https://doi.org/https://doi.org/10.1016/j.cirpj.2020.08.002
Halperin, D., Latombe, J.-C., & Wilson, R. H. (2000). A general framework for assembly planning: The motion space approach. Algorithmica, 26(3), 577-601. https://doi.org/10.1007=s004539910025
Hofmann, C., Brakemeier, N., Krahe, C., Stricker, N., & Lanza, G. (2018). The impact of routing and operation flexibility on the performance of matrix production compared to a production line. Congress of the German Academic Association for Production Technology,
Hsu, H.-H., & Fu, L.-C. (1995). Fully automated robotic assembly cell: scheduling and simulation. Proceedings of 1995 IEEE International Conference on Robotics and Automation,
Hui, C., Yuan, L., & Kai-fu, Z. (2009). Efficient method of assembly sequence planning based on GAAA and optimizing by assembly path feedback for complex product. The International Journal of Advanced Manufacturing Technology, 42(11), 1187-1204. https://doi.org/https://doi.org/10.1007/s00170-008-1661-8
Izui, K., Murakumo, Y., Suemitsu, I., Nishiwaki, S., Noda, A., & Nagatani, T. (2013). Multiobjective layout optimization of robotic cellular manufacturing systems. Computers & Industrial Engineering, 64(2), 537-544. https://doi.org/https://doi.org/10.1016/j.cie.2012.12.003
Janardhanan, M. N., Li, Z., Bocewicz, G., Banaszak, Z., & Nielsen, P. (2019). Metaheuristic algorithms for balancing robotic assembly lines with sequence-dependent robot setup times. Applied Mathematical Modelling, 65, 256-270. https://doi.org/https://doi.org/10.1016/j.apm.2018.08.016
Jiménez, P. (2013). Survey on assembly sequencing: a combinatorial and geometrical perspective. Journal of Intelligent Manufacturing, 24(2), 235-250. https://doi.org/10.1007/s10845-011-0578-5
Joseph, O., & Sridharan, R. (2011). Effects of routing flexibility, sequencing flexibility and scheduling decision rules on the performance of a flexible manufacturing system. The International Journal of Advanced Manufacturing Technology, 56, 291-306. https://doi.org/https://doi.org/10.1007/s00170-011-3158-0
Kheirabadi, M., Keivanpour, S., Chinniah, Y., & Frayret, J. (2022). A Review on Collaborative Robot Assembly Line Balancing Problems. IFAC-PapersOnLine, 55(10), 2779-2784. https://doi.org/https://doi.org/10.1016/j.ifacol.2022.10.151
Khouja, M., Booth, D. E., Suh, M., & Mahaney Jr, J. K. (2000). Statistical procedures for task assignment and robot selection in assembly cells. International Journal of Computer Integrated Manufacturing, 13(2), 95-106. https://doi.org/https://doi.org/10.1080/095119200129957
Kojima, S., & Hashimoto, H. (1999). 3-D CAD data oriented self-planning of assembly robot cell systems. 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No. 99TH8399),
Koltai, T., Dimény, I., Gallina, V., Gaal, A., & Sepe, C. (2021). An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models. International Journal of Production Economics, 242, 108292. https://doi.org/https://doi.org/10.1016/j.ijpe.2021.108292
Lee, J.-K., & Lee, T.-E. (2002). Automata-based supervisory control logic design for a multi-robot assembly cell. International Journal of Computer Integrated Manufacturing, 15(4), 319-334. https://doi.org/https://doi.org/10.1080/09511920110078097
Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic assembly line balancing. European Journal of Operational Research, 168(3), 811-825. https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.030
Li, Y., Zou, J., Jia, Y., Meng, L., & Zou, W. (2023). An improved genetic algorithm for multi-AGV dispatching problem with unloading setup time in a matrix manufacturing workshop. International Journal of Industrial Engineering Computations, 14(4), 767-784. https://doi.org/10.5267/j.ijiec.2023.7.002
Li, Z.-K., Sang, H.-Y., Li, J.-Q., Han, Y.-Y., Gao, K.-Z., Zheng, Z.-X., & Liu, L.-l. (2023). Invasive weed optimization for multi-AGVs dispatching problem in a matrix manufacturing workshop. Swarm and Evolutionary Computation, 77, 101227. https://doi.org/https://doi.org/10.1016/j.swevo.2023.101227
Li, Z., Janardhanan, M., Tang, Q., & Zhang, Z. (2023). Models and algorithms for U-shaped assembly line balancing problem with collaborative robots. Soft Computing, 1-21. https://doi.org/https://doi.org/10.1007/s00500-023-08130-y
Li, Z., Janardhanan, M. N., & Tang, Q. (2021). Multi-objective migrating bird optimization algorithm for cost-oriented assembly line balancing problem with collaborative robots. Neural Computing and Applications, 1-22. https://doi.org/https://doi.org/10.1007/s00521-020-05610-2
Li, Z., Janardhanan, M. N., Tang, Q., & Nielsen, P. (2018). Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line. Engineering Optimization, 50(5), 877-893. https://doi.org/https://doi.org/10.1080/0305215X.2017.1351963
Li, Z., Janardhanan, M. N., Tang, Q., & Ponnambalam, S. (2019). Model and metaheuristics for robotic two-sided assembly line balancing problems with setup times. Swarm and Evolutionary Computation, 50, 100567. https://doi.org/https://doi.org/10.1016/j.swevo.2019.100567
Lin, H.-C., Egbelu, P. J., & WU, C.-T. (1995). A two-robot printed circuit board assembly system. International Journal of Computer Integrated Manufacturing, 8(1), 21-31. https://doi.org/https://doi.org/10.1080/09511929508944626
Lotter, B. (2013). Manufacturing assembly handbook. Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/C2013-0-04107-2
Lozano-Pérez, T., Mason, M. T., & Taylor, R. H. (1983). Automatic synthesis of fine-motion strategies for robots. Robotics Research, 1, 65-96. https://doi.org/https://doi.org/10.1177/027836498400300101
Maoudj, A., & Bouzouia, B. (2019). Distributed multi-agent scheduling and control system for robotic flexible assembly cells. Journal of Intelligent Manufacturing, 30(4), 1629-1644. https://doi.org/https://doi.org/10.1007/s10845-017-1345-z
Marian, R., Kargas, A., Luong, L., & Abhary, K. (2003). A framework to planning robotic flexible assembly cells. https://doi.org/http://hdl.handle.net/102.100.100/192866?index=1
Marian, R. M., Luong, L. H., & Abhary, K. (2003). Assembly sequence planning and optimisation using genetic algorithms: part I. Automatic generation of feasible assembly sequences. Applied Soft Computing, 2(3), 223-253. https://doi.org/https://doi.org/10.1016/S1568-4946(02)00064-9
Mayer, S., Höhme, N., Gankin, D., & Endisch, C. (2019). Adaptive Production Control in a Modular Assembly System–Towards an Agent-based Approach. 2019 IEEE 17th international conference on industrial informatics (INDIN),
Miao, M.-P., Sang, H.-Y., Wang, Y.-T., Zhang, B., & Tian, M.-X. (2023). Joint scheduling of parallel machines and AGVs with sequence-dependent setup times in a matrix workshop. Computers & Industrial Engineering, 109621. https://doi.org/https://doi.org/10.1016/j.cie.2023.109621
Michniewicz, J., & Reinhart, G. (2016). Cyber-Physical-Robotics–Modelling of modular robot cells for automated planning and execution of assembly tasks. Mechatronics, 34, 170-180. https://doi.org/https://doi.org/10.1016/j.mechatronics.2015.04.012
Michniewicz, J., Reinhart, G., & Boschert, S. (2016). CAD-based automated assembly planning for variable products in modular production systems. Procedia CIRP, 44, 44-49. https://doi.org/https://doi.org/10.1016/j.procir.2016.02.016
Mohamed, S. B., Petty, D. J., Harrison, D. K., & Rigby, R. (2001). A cell management system to support robotic assembly. The International Journal of Advanced Manufacturing Technology, 18(8), 598-604. https://doi.org/https://link.springer.com/content/pdf/10.1007/s001700170037.pdf
Morato, C., Kaipa, K. N., & Gupta, S. K. (2013). Improving assembly precedence constraint generation by utilizing motion planning and part interaction clusters. Computer-Aided Design, 45(11), 1349-1364. https://doi.org/https://doi.org/10.1016/j.cad.2013.06.005
Mueller, D., & Schmitt, T. V. (2020). Production planning in autonomous and matrix-structured assembly systems: effects of similarity of precedence graphs on order release sequencing. Procedia CIRP, 93, 1358-1363. https://doi.org/https://doi.org/10.1016/j.procir.2020.06.002
Nof, S. Y., & Drezner, Z. (1993). The multiple-robot assembly plan problem. Journal of Intelligent and Robotic Systems, 7(1), 57-71. https://doi.org/https://doi.org/10.1007/BF01258212
Nourmohammadi, A., Fathi, M., & Ng, A. H. (2022). Balancing and scheduling assembly lines with human-robot collaboration tasks. Computers & Operations Research, 140, 105674. https://doi.org/https://doi.org/10.1016/j.cor.2021.105674
Pan, C. (2005). Integrating CAD files and automatic assembly sequence planning. Iowa State University. https://doi.org/https://doi.org/10.31274/rtd-180813-15396
Pelagagge, P. M., Cardarelli, G., & Palumbo, M. (1995). Design criteria for cooperating robots assembly cells. Journal of Manufacturing Systems, 14(4), 219-229. https://doi.org/https://doi.org/10.1016/0278-6125(95)98875-7
Pellegrinelli, S., Pedrocchi, N., Tosatti, L. M., Fischer, A., & Tolio, T. (2017). Multi-robot spot-welding cells for car-body assembly: Design and motion planning. Robotics and Computer-Integrated Manufacturing, 44, 97-116. https://doi.org/https://doi.org/10.1016/j.rcim.2016.08.006
Pinedo, M. (2012). Advanced Single Machine Models. In Scheduling; Theory, Algorithms, and Systems (4 ed., pp. 70 -77). Springer.
Rabbani, M., Behbahan, S. Z. B., & Farrokhi-Asl, H. (2020). The collaboration of human-robot in mixed-model four-sided assembly line balancing problem. Journal of Intelligent & Robotic Systems, 100, 71-81. https://doi.org/https://doi.org/10.1007/s10846-020-01177-1
Rakshit, S., & Akella, S. (2014). The influence of motion paths and assembly sequences on the stability of assemblies. IEEE Transactions on Automation Science and Engineering, 12(2), 615-627. https://doi.org/10.1109/TASE.2014.2345569
Rosell, J. (2004). Assembly and task planning using Petri nets: a survey. Proceedings of the institution of mechanical engineers, part B: journal of engineering manufacture, 218(8), 987-994. https://doi.org/https://doi.org/10.1243/0954405041486019
Rubinovitz, J. (1991). Design and balancing of robotic assembly lines. Proceedings of the Fourth World Conference on Robotics Research, Pittsburgh, PA, 1991,
Rubinovitz, J., Bukchin, J., & Lenz, E. (1993). RALB–A heuristic algorithm for design and balancing of robotic assembly lines. CIRP annals, 42(1), 497-500. https://doi.org/https://doi.org/10.1016/S0007-8506(07)62494-9
Şahin, M. C., & Tural, M. K. (2023). Robotic stochastic assembly line balancing. Flexible Services and Manufacturing Journal, 1-40. https://doi.org/https://doi.org/10.1007/s10696-023-09494-x
Sawik, T. (1998). Simultaneous loading, routing, and assembly plan selection in a flexible assembly system. Mathematical and computer modelling, 28(9), 19-29. https://doi.org/https://doi.org/10.1016/S0895-7177(98)00142-3
Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168(3), 666-693. https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.022
Scholz-Reiter, B., & Freitag, M. (2007). Autonomous processes in assembly systems. CIRP annals, 56(2), 712-729. https://doi.org/https://doi.org/10.1016/j.cirp.2007.10.002
Schönemann, M., Herrmann, C., Greschke, P., & Thiede, S. (2015). Simulation of matrix-structured manufacturing systems. Journal of Manufacturing Systems, 37, 104-112. https://doi.org/https://doi.org/10.1016/j.jmsy.2015.09.002
Schukat, E., Rachner, J., Maidl, A., Göppert, A., Adlon, T., Burggräf, P., & Schmitt, R. H. (2022). Agent-based Order Release in Matrix-Structured Assembly Systems. Proceedings of the Conference on Production Systems and Logistics: CPSL 2022,
Stadnicka, D., & Antonelli, D. (2019). Human-robot collaborative work cell implementation through lean thinking. International Journal of Computer Integrated Manufacturing, 32(6), 580-595. https://doi.org/https://doi.org/10.1080/0951192X.2019.1599437
Stecke, K. E., & Mokhtarzadeh, M. (2022). Balancing collaborative human–robot assembly lines to optimise cycle time and ergonomic risk. International Journal of Production Research, 60(1), 25-47. https://doi.org/https://doi.org/10.1080/00207543.2021.1989077
Su, C.-T., & Fu, H.-P. (1998). A simulated annealing heuristic for robotics assembly using the dynamic pick-and-place model. Production Planning & Control, 9(8), 795-802. https://doi.org/https://doi.org/10.1080/095372898233560
Thomas, U., & Wahl, F. M. (2001). A system for automatic planning, evaluation and execution of assembly sequences for industrial robots. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180),
Trierweiler, M., Foith-Förster, P., & Bauernhansl, T. (2020). Changeability of matrix assembly systems. Procedia CIRP, 93, 1127-1132. https://doi.org/https://doi.org/10.1016/j.procir.2020.04.029
Tsarouchi, P., Michalos, G., Makris, S., Athanasatos, T., Dimoulas, K., & Chryssolouris, G. (2017). On a human–robot workplace design and task allocation system. International Journal of Computer Integrated Manufacturing, 30(12), 1272-1279. https://doi.org/https://doi.org/10.1080/0951192X.2017.1307524
Tuncel, G., & Bayhan, G. M. (2007). Applications of Petri nets in production scheduling: a review. The International Journal of Advanced Manufacturing Technology, 34(7-8), 762-773. https://doi.org/https://doi.org/10.1007/s00170-006-0640-1
Uddin, M. K., & Lastra, J. L. M. (2011). Assembly line balancing and sequencing. Assembly Line–Theory and Practice, 13-36. https://doi.org/10.5772/19953
Wang, D., & Zhang, J. (2023). Flow shop scheduling with human–robot collaboration: a joint chance-constrained programming approach. International Journal of Production Research, 1-21. https://doi.org/https://doi.org/10.1080/00207543.2023.2181025
Weckenborg, C., Kieckhäfer, K., Müller, C., Grunewald, M., & Spengler, T. S. (2020). Balancing of assembly lines with collaborative robots. Business Research, 13(1), 93-132.
Weckenborg, C., & Spengler, T. S. (2019). Assembly Line Balancing with Collaborative Robots under consideration of Ergonomics: A cost-oriented approach. IFAC-PapersOnLine, 52(13), 1860-1865. https://doi.org/https://doi.org/10.1016/j.ifacol.2019.11.473
Wilson, R. H., Kavraki, L., Latombe, J.-C., & Lozano-Pérez, T. (1995). Two-handed assembly sequencing. The International journal of robotics research, 14(4), 335-350. https://doi.org/https://doi.org/10.1177/02783649950140040
Wolter, J., Chakrabarty, S., & Tsao, J. (1992). Mating constraint languages for assembly sequence planning. ICRA,
Yadav, A., & Agrawal, S. (2022). Mathematical model for robotic two-sided assembly line balancing problem with zoning constraints. International Journal of System Assurance Engineering and Management, 13(1), 395-408. https://doi.org/https://doi.org/10.1007/s13198-021-01284-8
Yoosefelahi, A., Aminnayeri, M., Mosadegh, H., & Ardakani, H. D. (2012). Type II robotic assembly line balancing problem: An evolution strategies algorithm for a multi-objective model. Journal of Manufacturing Systems, 31(2), 139-151. https://doi.org/https://doi.org/10.1016/j.jmsy.2011.10.002
Zhang, B., Xu, L., & Zhang, J. (2021). Balancing and sequencing problem of mixed-model U-shaped robotic assembly line: Mathematical model and dragonfly algorithm based approach. Applied Soft Computing, 98, 106739. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106739
Zhang, L., Huang, X., Kim, Y. J., & Manocha, D. (2008). D-plan: Efficient collision-free path computation for part removal and disassembly. Computer-Aided Design and Applications, 5(6), 774-786. https://doi.org/10.3722/cadaps.2008.774-786
Abd, K., Abhary, K., & Marian, R. (2011b). A scheduling framework for robotic flexible assembly cells. Applied Science and Engineering Progress, 4(1), 31-38. https://doi.org/https://ph02.tci-thaijo.org/index.php/ijast/article/view/67377
Abd, K., Abhary, K., & Marian, R. (2012). Intelligent modeling of scheduling robotic flexible assembly cells using fuzzy logic. https://doi.org/https://www.researchgate.net/publication/262398812_
Abd, K., Abhary, K., & Marian, R. (2016). Multi-objective optimisation of dynamic scheduling in robotic flexible assembly cells via fuzzy-based Taguchi approach. Computers & Industrial Engineering, 99, 250-259. https://doi.org/https://doi.org/10.1016/j.cie.2016.07.028
Abd, K. K. (2015). Intelligent scheduling of robotic flexible assembly cells. Springer. https://doi.org/https://doi-org.ezproxy.utp.edu.co/10.1007/978-3-319-26296-3
Abd, K. K. (2016). Development of an Intelligent Methodology for Scheduling RFAC. In Intelligent Scheduling of Robotic Flexible Assembly Cells (pp. 31-47). Springer. https://doi.org/http://dx.doi.org/10.1007/978-3-319-26296-3_3
Alfadhlani, A. M. r., Toha, I. S., & Samadhi, T. A. (2019). Automatic Precedence Constraint Generation for Assembly Sequence Planning using a Three-Dimensional Solid Model. https://doi.org/https://doi.org/10.14716/ijtech.v10i2.3064
Allahverdi, A., Pesch, E., Pinedo, M., & Werner, F. (2018). Scheduling in manufacturing systems: new trends and perspectives. https://doi.org/https://doi.org/10.1080/00207543.2018.1504252
Andrzejewski, K., Cooper, M., Griffiths, C., & Giannetti, C. (2018). Optimisation process for robotic assembly of electronic components. The International Journal of Advanced Manufacturing Technology, 99, 2523-2535. https://doi.org/https://doi.org/10.1007/s00170-018-2645-y
Basran, J. S., Petriu, E. M., & Petriu, D. C. (1997). Flexible agent-based robotic assembly cell. Proceedings of International Conference on Robotics and Automation,
Blazewicz, J. (2013). Scheduling computer and manufacturing processes. https://doi.org/https://doi.org/10.1057/palgrave.jors.2600793
Boschetti, G., Faccio, M., Milanese, M., & Minto, R. (2021). C-ALB (Collaborative Assembly Line Balancing): a new approach in cobot solutions. The International Journal of Advanced Manufacturing Technology, 116, 3027-3042. https://doi.org/https://doi.org/10.1007/s00170-021-07565-7
Boysen, N., Fliedner, M., & Scholl, A. (2009). Production planning of mixed-model assembly lines: overview and extensions. Production Planning and Control, 20(5), 455-471. https://doi.org/https://doi.org/10.1016/S0360-8352(01)00065-1
Brucker, P. (2006). Scheduling algorithms (Vol. 50).
Bukchin, J., & Tzur, M. (2000). Design of flexible assembly line to minimize equipment cost. Iie transactions, 32(7), 585-598. https://doi.org/https://doi.org/10.1023/A:1007646714909
Cai, M., Liang, R., Luo, X., & Liu, C. (2022). Task allocation strategies considering task matching and ergonomics in the human-robot collaborative hybrid assembly cell. International Journal of Production Research, 1-20. https://doi.org/https://doi.org/10.1080/00207543.2022.2147234
Capacho Betancourt, L., & Pastor Moreno, R. (2004). Generación de secuencias de montaje y equilibrado de líneas. https://doi.org/http://hdl.handle.net/2117/509
Caprihan, R., Kumar, A., & Stecke, K. E. (2013). Evaluation of the impact of information delays on flexible manufacturing systems performance in dynamic scheduling environments. The International Journal of Advanced Manufacturing Technology, 67(1-4), 311-338. https://doi.org/https://doi.org/10.1007/s00170-013-4755-x
Carlson, J. S., Spensieri, D., Söderberg, R., Bohlin, R., & Lindkvist, L. (2013). Non-nominal path planning for robust robotic assembly. Journal of Manufacturing Systems, 32(3), 429-435. https://doi.org/https://doi.org/10.1016/j.jmsy.2013.04.013
Casalino, A., Zanchettin, A. M., Piroddi, L., & Rocco, P. (2019). Optimal scheduling of human–robot collaborative assembly operations with time petri nets. IEEE Transactions on Automation Science and Engineering, 18(1), 70-84. https://doi.org/https://doi.org/10.1109/TASE.2019.2932150
Chan, F. T., & Chan, H. K. (2004). A comprehensive survey and future trend of simulation study on FMS scheduling. Journal of Intelligent Manufacturing, 15(1), 87-102. https://doi.org/https://doi.org/10.1023/B:JIMS.0000010077.27141.be
Chang, H., & Li, T.-Y. (1995). Assembly maintainability study with motion planning. Proceedings of 1995 IEEE International Conference on Robotics and Automation,
Chen, J., & Lee, C. Y. (1999). General multiprocessor task scheduling. Naval Research Logistics (NRL), 46(1), 57-74. https://doi.org/https://doi.org/10.1002/(SICI)1520-6750(199902)46:13.0.CO;2-H
Chincholkar, A., & Chetty, O. K. (1996). Stochastic coloured Petri nets for modelling and evaluation, and heuristic rule base for scheduling of FMS. The International Journal of Advanced Manufacturing Technology, 12(5), 339-348. https://doi.org/https://doi.org/10.1007/BF01179809
Chutima, P. (2022). A comprehensive review of robotic assembly line balancing problem. Journal of Intelligent Manufacturing, 33(1), 1-34. https://doi.org/https://doi.org/10.1007/s10845-020-01641-7
Çil, Z. A., Li, Z., Mete, S., & Özceylan, E. (2020). Mathematical model and bee algorithms for mixed-model assembly line balancing problem with physical human–robot collaboration. Applied Soft Computing, 93, 106394. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106394
Çil, Z. A., Mete, S., & Ağpak, K. (2017). Analysis of the type II robotic mixed-model assembly line balancing problem. Engineering Optimization, 49(6), 990-1009. https://doi.org/https://doi.org/10.1080/0305215X.2016.1230208
Cortés, J., Jaillet, L., & Siméon, T. (2008). Disassembly path planning for complex articulated objects. IEEE Transactions on Robotics, 24(2), 475-481. https://doi.org/10.1109/TRO.2008.915464
Cottrez, F., & Van Brussel, H. (1989). SESFAC: A scheduling expert system for flexible assembly cells. Proceedings of the IEEE Intern. Conf. on Robotics and Automation,
Daoud, S., Chehade, H., Yalaoui, F., & Amodeo, L. (2014). Solving a robotic assembly line balancing problem using efficient hybrid methods. Journal of Heuristics, 20(3), 235-259. https://doi.org/https://doi.org/10.1007/s10732-014-9239-0
De Fazio, T., & Whitney, D. (1987). Simplified generation of all mechanical assembly sequences. IEEE Journal on Robotics and Automation, 3(6), 640-658. https://doi.org/10.1109/JRA.1987.1087132
Del Valle, C., & Camacho, E. (1996). Automatic assembly task assignment for a multirobot environment. Control engineering practice, 4(7), 915-921. https://doi.org/https://doi.org/10.1016/0967-0661(96)00089-5
Delchambre, A. (2012). Computer-aided assembly planning. Springer Science & Business Media.
Ferreira, C., Figueira, G., & Amorim, P. (2021). Scheduling human-robot teams in collaborative working cells. International Journal of Production Economics, 235, 108094. https://doi.org/https://doi.org/10.1016/j.ijpe.2021.108094
Framinan, J. M., Leisten, R., & García, R. R. (2014). Manufacturing scheduling systems. An integrated view on Models, Methods and Tools, 51-63. https://doi.org/https://doi.org/10.1007/978-1-4471-6272-8
French, S. (1982). Sequencing and scheduling. An Introduction to the Mathematics of the Job-shop. https://doi.org/https://doi.org/10.1002/net.3230130218
Ghandi, S., & Masehian, E. (2015). Review and taxonomies of assembly and disassembly path planning problems and approaches. Computer-Aided Design, 67, 58-86. https://doi.org/https://doi.org/10.1016/j.cad.2015.05.001
Glibert, P.-R., Coupez, D., Peng, Y., & Delchambre, A. (1990). Scheduling of a multi-robot assembly cell. Computer Integrated Manufacturing Systems, 3(4), 236-245. https://doi.org/https://doi.org/10.1016/0951-5240(90)90064-L
Göppert, A., Schukat, E., Burggräf, P., & Schmitt, R. H. (2021). Agile hybrid assembly systems: bridging the gap between line and matrix configurations. In Advances in Automotive Production Technology–Theory and Application (pp. 3-11). Springer. https://doi.org/https://doi.org/10.1007/978-3-662-62962-8_1
Greschke, P., Schönemann, M., Thiede, S., & Herrmann, C. (2014). Matrix structures for high volumes and flexibility in production systems. Procedia CIRP, 17, 160-165. https://doi.org/https://doi.org/10.1016/j.procir.2014.02.040
Gultekin, H., Akturk, M. S., & Karasan, O. E. (2008). Scheduling in robotic cells: process flexibility and cell layout. International Journal of Production Research, 46(8), 2105-2121. https://doi.org/ http://dx.doi.org/10.1080/00207540601100262
Gultekin, H., Coban, B., & Akhlaghi, V. E. (2018). Cyclic scheduling of parts and robot moves in m-machine robotic cells. Computers & Operations Research, 90, 161-172. https://doi.org/https://doi.org/10.1016/j.cor.2017.09.018
Hagemann, S., & Stark, R. (2020). An optimal algorithm for the robotic assembly system design problem: An industrial case study. CIRP Journal of Manufacturing Science and Technology, 31, 500-513. https://doi.org/https://doi.org/10.1016/j.cirpj.2020.08.002
Halperin, D., Latombe, J.-C., & Wilson, R. H. (2000). A general framework for assembly planning: The motion space approach. Algorithmica, 26(3), 577-601. https://doi.org/10.1007=s004539910025
Hofmann, C., Brakemeier, N., Krahe, C., Stricker, N., & Lanza, G. (2018). The impact of routing and operation flexibility on the performance of matrix production compared to a production line. Congress of the German Academic Association for Production Technology,
Hsu, H.-H., & Fu, L.-C. (1995). Fully automated robotic assembly cell: scheduling and simulation. Proceedings of 1995 IEEE International Conference on Robotics and Automation,
Hui, C., Yuan, L., & Kai-fu, Z. (2009). Efficient method of assembly sequence planning based on GAAA and optimizing by assembly path feedback for complex product. The International Journal of Advanced Manufacturing Technology, 42(11), 1187-1204. https://doi.org/https://doi.org/10.1007/s00170-008-1661-8
Izui, K., Murakumo, Y., Suemitsu, I., Nishiwaki, S., Noda, A., & Nagatani, T. (2013). Multiobjective layout optimization of robotic cellular manufacturing systems. Computers & Industrial Engineering, 64(2), 537-544. https://doi.org/https://doi.org/10.1016/j.cie.2012.12.003
Janardhanan, M. N., Li, Z., Bocewicz, G., Banaszak, Z., & Nielsen, P. (2019). Metaheuristic algorithms for balancing robotic assembly lines with sequence-dependent robot setup times. Applied Mathematical Modelling, 65, 256-270. https://doi.org/https://doi.org/10.1016/j.apm.2018.08.016
Jiménez, P. (2013). Survey on assembly sequencing: a combinatorial and geometrical perspective. Journal of Intelligent Manufacturing, 24(2), 235-250. https://doi.org/10.1007/s10845-011-0578-5
Joseph, O., & Sridharan, R. (2011). Effects of routing flexibility, sequencing flexibility and scheduling decision rules on the performance of a flexible manufacturing system. The International Journal of Advanced Manufacturing Technology, 56, 291-306. https://doi.org/https://doi.org/10.1007/s00170-011-3158-0
Kheirabadi, M., Keivanpour, S., Chinniah, Y., & Frayret, J. (2022). A Review on Collaborative Robot Assembly Line Balancing Problems. IFAC-PapersOnLine, 55(10), 2779-2784. https://doi.org/https://doi.org/10.1016/j.ifacol.2022.10.151
Khouja, M., Booth, D. E., Suh, M., & Mahaney Jr, J. K. (2000). Statistical procedures for task assignment and robot selection in assembly cells. International Journal of Computer Integrated Manufacturing, 13(2), 95-106. https://doi.org/https://doi.org/10.1080/095119200129957
Kojima, S., & Hashimoto, H. (1999). 3-D CAD data oriented self-planning of assembly robot cell systems. 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No. 99TH8399),
Koltai, T., Dimény, I., Gallina, V., Gaal, A., & Sepe, C. (2021). An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models. International Journal of Production Economics, 242, 108292. https://doi.org/https://doi.org/10.1016/j.ijpe.2021.108292
Lee, J.-K., & Lee, T.-E. (2002). Automata-based supervisory control logic design for a multi-robot assembly cell. International Journal of Computer Integrated Manufacturing, 15(4), 319-334. https://doi.org/https://doi.org/10.1080/09511920110078097
Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic assembly line balancing. European Journal of Operational Research, 168(3), 811-825. https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.030
Li, Y., Zou, J., Jia, Y., Meng, L., & Zou, W. (2023). An improved genetic algorithm for multi-AGV dispatching problem with unloading setup time in a matrix manufacturing workshop. International Journal of Industrial Engineering Computations, 14(4), 767-784. https://doi.org/10.5267/j.ijiec.2023.7.002
Li, Z.-K., Sang, H.-Y., Li, J.-Q., Han, Y.-Y., Gao, K.-Z., Zheng, Z.-X., & Liu, L.-l. (2023). Invasive weed optimization for multi-AGVs dispatching problem in a matrix manufacturing workshop. Swarm and Evolutionary Computation, 77, 101227. https://doi.org/https://doi.org/10.1016/j.swevo.2023.101227
Li, Z., Janardhanan, M., Tang, Q., & Zhang, Z. (2023). Models and algorithms for U-shaped assembly line balancing problem with collaborative robots. Soft Computing, 1-21. https://doi.org/https://doi.org/10.1007/s00500-023-08130-y
Li, Z., Janardhanan, M. N., & Tang, Q. (2021). Multi-objective migrating bird optimization algorithm for cost-oriented assembly line balancing problem with collaborative robots. Neural Computing and Applications, 1-22. https://doi.org/https://doi.org/10.1007/s00521-020-05610-2
Li, Z., Janardhanan, M. N., Tang, Q., & Nielsen, P. (2018). Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line. Engineering Optimization, 50(5), 877-893. https://doi.org/https://doi.org/10.1080/0305215X.2017.1351963
Li, Z., Janardhanan, M. N., Tang, Q., & Ponnambalam, S. (2019). Model and metaheuristics for robotic two-sided assembly line balancing problems with setup times. Swarm and Evolutionary Computation, 50, 100567. https://doi.org/https://doi.org/10.1016/j.swevo.2019.100567
Lin, H.-C., Egbelu, P. J., & WU, C.-T. (1995). A two-robot printed circuit board assembly system. International Journal of Computer Integrated Manufacturing, 8(1), 21-31. https://doi.org/https://doi.org/10.1080/09511929508944626
Lotter, B. (2013). Manufacturing assembly handbook. Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/C2013-0-04107-2
Lozano-Pérez, T., Mason, M. T., & Taylor, R. H. (1983). Automatic synthesis of fine-motion strategies for robots. Robotics Research, 1, 65-96. https://doi.org/https://doi.org/10.1177/027836498400300101
Maoudj, A., & Bouzouia, B. (2019). Distributed multi-agent scheduling and control system for robotic flexible assembly cells. Journal of Intelligent Manufacturing, 30(4), 1629-1644. https://doi.org/https://doi.org/10.1007/s10845-017-1345-z
Marian, R., Kargas, A., Luong, L., & Abhary, K. (2003). A framework to planning robotic flexible assembly cells. https://doi.org/http://hdl.handle.net/102.100.100/192866?index=1
Marian, R. M., Luong, L. H., & Abhary, K. (2003). Assembly sequence planning and optimisation using genetic algorithms: part I. Automatic generation of feasible assembly sequences. Applied Soft Computing, 2(3), 223-253. https://doi.org/https://doi.org/10.1016/S1568-4946(02)00064-9
Mayer, S., Höhme, N., Gankin, D., & Endisch, C. (2019). Adaptive Production Control in a Modular Assembly System–Towards an Agent-based Approach. 2019 IEEE 17th international conference on industrial informatics (INDIN),
Miao, M.-P., Sang, H.-Y., Wang, Y.-T., Zhang, B., & Tian, M.-X. (2023). Joint scheduling of parallel machines and AGVs with sequence-dependent setup times in a matrix workshop. Computers & Industrial Engineering, 109621. https://doi.org/https://doi.org/10.1016/j.cie.2023.109621
Michniewicz, J., & Reinhart, G. (2016). Cyber-Physical-Robotics–Modelling of modular robot cells for automated planning and execution of assembly tasks. Mechatronics, 34, 170-180. https://doi.org/https://doi.org/10.1016/j.mechatronics.2015.04.012
Michniewicz, J., Reinhart, G., & Boschert, S. (2016). CAD-based automated assembly planning for variable products in modular production systems. Procedia CIRP, 44, 44-49. https://doi.org/https://doi.org/10.1016/j.procir.2016.02.016
Mohamed, S. B., Petty, D. J., Harrison, D. K., & Rigby, R. (2001). A cell management system to support robotic assembly. The International Journal of Advanced Manufacturing Technology, 18(8), 598-604. https://doi.org/https://link.springer.com/content/pdf/10.1007/s001700170037.pdf
Morato, C., Kaipa, K. N., & Gupta, S. K. (2013). Improving assembly precedence constraint generation by utilizing motion planning and part interaction clusters. Computer-Aided Design, 45(11), 1349-1364. https://doi.org/https://doi.org/10.1016/j.cad.2013.06.005
Mueller, D., & Schmitt, T. V. (2020). Production planning in autonomous and matrix-structured assembly systems: effects of similarity of precedence graphs on order release sequencing. Procedia CIRP, 93, 1358-1363. https://doi.org/https://doi.org/10.1016/j.procir.2020.06.002
Nof, S. Y., & Drezner, Z. (1993). The multiple-robot assembly plan problem. Journal of Intelligent and Robotic Systems, 7(1), 57-71. https://doi.org/https://doi.org/10.1007/BF01258212
Nourmohammadi, A., Fathi, M., & Ng, A. H. (2022). Balancing and scheduling assembly lines with human-robot collaboration tasks. Computers & Operations Research, 140, 105674. https://doi.org/https://doi.org/10.1016/j.cor.2021.105674
Pan, C. (2005). Integrating CAD files and automatic assembly sequence planning. Iowa State University. https://doi.org/https://doi.org/10.31274/rtd-180813-15396
Pelagagge, P. M., Cardarelli, G., & Palumbo, M. (1995). Design criteria for cooperating robots assembly cells. Journal of Manufacturing Systems, 14(4), 219-229. https://doi.org/https://doi.org/10.1016/0278-6125(95)98875-7
Pellegrinelli, S., Pedrocchi, N., Tosatti, L. M., Fischer, A., & Tolio, T. (2017). Multi-robot spot-welding cells for car-body assembly: Design and motion planning. Robotics and Computer-Integrated Manufacturing, 44, 97-116. https://doi.org/https://doi.org/10.1016/j.rcim.2016.08.006
Pinedo, M. (2012). Advanced Single Machine Models. In Scheduling; Theory, Algorithms, and Systems (4 ed., pp. 70 -77). Springer.
Rabbani, M., Behbahan, S. Z. B., & Farrokhi-Asl, H. (2020). The collaboration of human-robot in mixed-model four-sided assembly line balancing problem. Journal of Intelligent & Robotic Systems, 100, 71-81. https://doi.org/https://doi.org/10.1007/s10846-020-01177-1
Rakshit, S., & Akella, S. (2014). The influence of motion paths and assembly sequences on the stability of assemblies. IEEE Transactions on Automation Science and Engineering, 12(2), 615-627. https://doi.org/10.1109/TASE.2014.2345569
Rosell, J. (2004). Assembly and task planning using Petri nets: a survey. Proceedings of the institution of mechanical engineers, part B: journal of engineering manufacture, 218(8), 987-994. https://doi.org/https://doi.org/10.1243/0954405041486019
Rubinovitz, J. (1991). Design and balancing of robotic assembly lines. Proceedings of the Fourth World Conference on Robotics Research, Pittsburgh, PA, 1991,
Rubinovitz, J., Bukchin, J., & Lenz, E. (1993). RALB–A heuristic algorithm for design and balancing of robotic assembly lines. CIRP annals, 42(1), 497-500. https://doi.org/https://doi.org/10.1016/S0007-8506(07)62494-9
Şahin, M. C., & Tural, M. K. (2023). Robotic stochastic assembly line balancing. Flexible Services and Manufacturing Journal, 1-40. https://doi.org/https://doi.org/10.1007/s10696-023-09494-x
Sawik, T. (1998). Simultaneous loading, routing, and assembly plan selection in a flexible assembly system. Mathematical and computer modelling, 28(9), 19-29. https://doi.org/https://doi.org/10.1016/S0895-7177(98)00142-3
Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research, 168(3), 666-693. https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.022
Scholz-Reiter, B., & Freitag, M. (2007). Autonomous processes in assembly systems. CIRP annals, 56(2), 712-729. https://doi.org/https://doi.org/10.1016/j.cirp.2007.10.002
Schönemann, M., Herrmann, C., Greschke, P., & Thiede, S. (2015). Simulation of matrix-structured manufacturing systems. Journal of Manufacturing Systems, 37, 104-112. https://doi.org/https://doi.org/10.1016/j.jmsy.2015.09.002
Schukat, E., Rachner, J., Maidl, A., Göppert, A., Adlon, T., Burggräf, P., & Schmitt, R. H. (2022). Agent-based Order Release in Matrix-Structured Assembly Systems. Proceedings of the Conference on Production Systems and Logistics: CPSL 2022,
Stadnicka, D., & Antonelli, D. (2019). Human-robot collaborative work cell implementation through lean thinking. International Journal of Computer Integrated Manufacturing, 32(6), 580-595. https://doi.org/https://doi.org/10.1080/0951192X.2019.1599437
Stecke, K. E., & Mokhtarzadeh, M. (2022). Balancing collaborative human–robot assembly lines to optimise cycle time and ergonomic risk. International Journal of Production Research, 60(1), 25-47. https://doi.org/https://doi.org/10.1080/00207543.2021.1989077
Su, C.-T., & Fu, H.-P. (1998). A simulated annealing heuristic for robotics assembly using the dynamic pick-and-place model. Production Planning & Control, 9(8), 795-802. https://doi.org/https://doi.org/10.1080/095372898233560
Thomas, U., & Wahl, F. M. (2001). A system for automatic planning, evaluation and execution of assembly sequences for industrial robots. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180),
Trierweiler, M., Foith-Förster, P., & Bauernhansl, T. (2020). Changeability of matrix assembly systems. Procedia CIRP, 93, 1127-1132. https://doi.org/https://doi.org/10.1016/j.procir.2020.04.029
Tsarouchi, P., Michalos, G., Makris, S., Athanasatos, T., Dimoulas, K., & Chryssolouris, G. (2017). On a human–robot workplace design and task allocation system. International Journal of Computer Integrated Manufacturing, 30(12), 1272-1279. https://doi.org/https://doi.org/10.1080/0951192X.2017.1307524
Tuncel, G., & Bayhan, G. M. (2007). Applications of Petri nets in production scheduling: a review. The International Journal of Advanced Manufacturing Technology, 34(7-8), 762-773. https://doi.org/https://doi.org/10.1007/s00170-006-0640-1
Uddin, M. K., & Lastra, J. L. M. (2011). Assembly line balancing and sequencing. Assembly Line–Theory and Practice, 13-36. https://doi.org/10.5772/19953
Wang, D., & Zhang, J. (2023). Flow shop scheduling with human–robot collaboration: a joint chance-constrained programming approach. International Journal of Production Research, 1-21. https://doi.org/https://doi.org/10.1080/00207543.2023.2181025
Weckenborg, C., Kieckhäfer, K., Müller, C., Grunewald, M., & Spengler, T. S. (2020). Balancing of assembly lines with collaborative robots. Business Research, 13(1), 93-132.
Weckenborg, C., & Spengler, T. S. (2019). Assembly Line Balancing with Collaborative Robots under consideration of Ergonomics: A cost-oriented approach. IFAC-PapersOnLine, 52(13), 1860-1865. https://doi.org/https://doi.org/10.1016/j.ifacol.2019.11.473
Wilson, R. H., Kavraki, L., Latombe, J.-C., & Lozano-Pérez, T. (1995). Two-handed assembly sequencing. The International journal of robotics research, 14(4), 335-350. https://doi.org/https://doi.org/10.1177/02783649950140040
Wolter, J., Chakrabarty, S., & Tsao, J. (1992). Mating constraint languages for assembly sequence planning. ICRA,
Yadav, A., & Agrawal, S. (2022). Mathematical model for robotic two-sided assembly line balancing problem with zoning constraints. International Journal of System Assurance Engineering and Management, 13(1), 395-408. https://doi.org/https://doi.org/10.1007/s13198-021-01284-8
Yoosefelahi, A., Aminnayeri, M., Mosadegh, H., & Ardakani, H. D. (2012). Type II robotic assembly line balancing problem: An evolution strategies algorithm for a multi-objective model. Journal of Manufacturing Systems, 31(2), 139-151. https://doi.org/https://doi.org/10.1016/j.jmsy.2011.10.002
Zhang, B., Xu, L., & Zhang, J. (2021). Balancing and sequencing problem of mixed-model U-shaped robotic assembly line: Mathematical model and dragonfly algorithm based approach. Applied Soft Computing, 98, 106739. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106739
Zhang, L., Huang, X., Kim, Y. J., & Manocha, D. (2008). D-plan: Efficient collision-free path computation for part removal and disassembly. Computer-Aided Design and Applications, 5(6), 774-786. https://doi.org/10.3722/cadaps.2008.774-786