How to cite this paper
Karami, A & Niaki, S. (2024). Change point analysis of events in social networks: An online convex optimization approach.International Journal of Industrial Engineering Computations , 15(3), 755-772.
Refrences
Ali, F., El-Sappagh, S., Islam, S. M. R., Ali, A., Attique, M., Imran, M., & Kwak, K.-S. (2021). An intelligent healthcare monitoring framework using wearable sensors and social networking data. Future Generation Computer Systems, 114, 23–43.
Aminikhanghahi, S., & Cook, D. J. (2017). A survey of methods for time series change point detection. Knowledge and Information Systems, 51(2), 339–367.
Azoury, K. S., & Warmuth, M. K. (2001). Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning, 43, 211–246.
Cao, Y., Xie, L., Xie, Y., & Xu, H. (2018). Sequential change-point detection via online convex optimization. Entropy, 20(2), 108.
Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge university press.
Chen, X., Liu, S., Sun, R., & Hong, M. (2019). On the convergence of a class of Adam-type algorithms for non-convex optimization. 7th International Conference on Learning Representations, ICLR 2019.
Drury, B., Drury, S. M., Rahman, M. A., & Ullah, I. (2022). A social network of crime: A review of the use of social networks for crime and the detection of crime. Online Social Networks and Media, 30, 100211.
Fisch, A. T. M., Eckley, I. A., & Fearnhead, P. (2022). A linear time method for the detection of collective and point anomalies. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(4), 494–508.
He, F., Mao, T., Hu, T., & Shu, L. (2018). A new type of change-detection scheme based on the window-limited weighted likelihood ratios. Expert Systems with Applications, 94, 149–163.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in Neural Information Processing Systems, 30.
Karami, A., & Niaki, S. T. A. (2024). An Online Support Vector Machine Algorithm for Dynamic Social Network Monitoring. Neural Networks, 171, 497-511.
Karimi, M., & Sadjadi, S. J. (2024). Optimization of an economic ordering quantity model for non-instantaneous deteriorating items with ordering time constraint using dynamic programming. Journal of Industrial and Management Optimization, 20(3), 1114–1141.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv Preprint ArXiv:1412.6980.
Kotłowski, W., & Grünwald, P. (2011). Maximum likelihood vs. sequential normalized maximum likelihood in on-line density estimation. Proceedings of the 24th Annual Conference on Learning Theory, 457–476.
Kovács, S., Bühlmann, P., Li, H., & Munk, A. (2023). Seeded binary segmentation: a general methodology for fast and optimal changepoint detection. Biometrika, 110(1), 249–256.
Lai, T. L., & Xing, H. (2010). Sequential change-point detection when the pre-and post-change parameters are unknown. Sequential Analysis, 29(2), 162–175.
Li, S., Xiao, S., Zhu, S., Du, N., Xie, Y., & Song, L. (2018). Learning temporal point processes via reinforcement learning. Advances in Neural Information Processing Systems, 31.
Lorden, G. (1971). Procedures for reacting to a change in distribution. The Annals of Mathematical Statistics, 1897–1908.
Mariani, S., & Cawley, P. (2021). Change detection using the generalized likelihood ratio method to improve the sensitivity of guided wave structural health monitoring systems. Structural Health Monitoring, 20(6), 3201–3226.
Mei, Y. (2006). Sequential change-point detection when unknown parameters are present in the pre-change distribution.
Miller, H., & Mokryn, O. (2020). Size agnostic change point detection framework for evolving networks. Plos One, 15(4), e0231035.
Pollak, M. (1985). Optimal detection of a change in distribution. The Annals of Statistics, 206–227.
Pollak, M. (1987). Average run lengths of an optimal method of detecting a change in distribution. The Annals of Statistics, 749–779.
Raginsky, M., Marcia, R. F., Silva, J., & Willett, R. M. (2009). Sequential probability assignment via online convex programming using exponential families. 2009 IEEE International Symposium on Information Theory, 1338–1342.
Raginsky, M., Willett, R. M., Horn, C., Silva, J., & Marcia, R. F. (2012). Sequential anomaly detection in the presence of noise and limited feedback. IEEE Transactions on Information Theory, 58(8), 5544–5562.
Romano, G., Eckley, I. A., Fearnhead, P., & Rigaill, G. (2023). Fast online changepoint detection via functional pruning CUSUM statistics. Journal of Machine Learning Research, 24, 1–36.
Ruggieri, E., & Antonellis, M. (2016). An exact approach to Bayesian sequential change point detection. Computational Statistics & Data Analysis, 97, 71–86.
Shiryaev, A. N. (1963). On optimum methods in quickest detection problems. Theory of Probability & Its Applications, 8(1), 22–46.
Shiryaev, A. N. (2010). Quickest detection problems: Fifty years later. Sequential Analysis, 29(4), 345–385.
Siegmund, D. O., & Yakir, B. (2008). Minimax optimality of the Shiryayev–Roberts change-point detection rule. Journal of Statistical Planning and Inference, 138(9), 2815–2825.
Song, G., Li, Y., Chen, X., He, X., & Tang, J. (2016). Influential node tracking on dynamic social network: An interchange greedy approach. IEEE Transactions on Knowledge and Data Engineering, 29(2), 359–372.
Tartakovsky, A. G., Rozovskii, B. L., Blazek, R. B., & Kim, H. (2006). A novel approach to detection of intrusions in computer networks via adaptive sequential and batch-sequential change-point detection methods. IEEE Transactions on Signal Processing, 54(9), 3372–3382.
Wang, H., Xie, L., Xie, Y., Cuozzo, A., & Mak, S. (2023). Sequential Change-Point Detection for Mutually Exciting Point Processes. Technometrics, 65(1), 44–56.
Wang, T., & Resnick, S. I. (2021). Common Growth Patterns for Regional Social Networks: A Point Process Approach. Journal of Data Science, 1–24.
Xie, L., Moustakides, G. V, & Xie, Y. (2023). Window-limited CUSUM for sequential change detection. IEEE Transactions on Information Theory.
Zarepour, M., & Habibi, R. (2023). A quasi-Bayesian change point detection with exchangeable weights. Journal of Statistical Planning and Inference, 222, 226–240.
Zhu, X., Li, Y., Liang, C., Chen, J., & Wu, D. (2013). Copula based change point detection for financial contagion in chinese banking. Procedia Computer Science, 17, 619–626.
Aminikhanghahi, S., & Cook, D. J. (2017). A survey of methods for time series change point detection. Knowledge and Information Systems, 51(2), 339–367.
Azoury, K. S., & Warmuth, M. K. (2001). Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning, 43, 211–246.
Cao, Y., Xie, L., Xie, Y., & Xu, H. (2018). Sequential change-point detection via online convex optimization. Entropy, 20(2), 108.
Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge university press.
Chen, X., Liu, S., Sun, R., & Hong, M. (2019). On the convergence of a class of Adam-type algorithms for non-convex optimization. 7th International Conference on Learning Representations, ICLR 2019.
Drury, B., Drury, S. M., Rahman, M. A., & Ullah, I. (2022). A social network of crime: A review of the use of social networks for crime and the detection of crime. Online Social Networks and Media, 30, 100211.
Fisch, A. T. M., Eckley, I. A., & Fearnhead, P. (2022). A linear time method for the detection of collective and point anomalies. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(4), 494–508.
He, F., Mao, T., Hu, T., & Shu, L. (2018). A new type of change-detection scheme based on the window-limited weighted likelihood ratios. Expert Systems with Applications, 94, 149–163.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in Neural Information Processing Systems, 30.
Karami, A., & Niaki, S. T. A. (2024). An Online Support Vector Machine Algorithm for Dynamic Social Network Monitoring. Neural Networks, 171, 497-511.
Karimi, M., & Sadjadi, S. J. (2024). Optimization of an economic ordering quantity model for non-instantaneous deteriorating items with ordering time constraint using dynamic programming. Journal of Industrial and Management Optimization, 20(3), 1114–1141.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv Preprint ArXiv:1412.6980.
Kotłowski, W., & Grünwald, P. (2011). Maximum likelihood vs. sequential normalized maximum likelihood in on-line density estimation. Proceedings of the 24th Annual Conference on Learning Theory, 457–476.
Kovács, S., Bühlmann, P., Li, H., & Munk, A. (2023). Seeded binary segmentation: a general methodology for fast and optimal changepoint detection. Biometrika, 110(1), 249–256.
Lai, T. L., & Xing, H. (2010). Sequential change-point detection when the pre-and post-change parameters are unknown. Sequential Analysis, 29(2), 162–175.
Li, S., Xiao, S., Zhu, S., Du, N., Xie, Y., & Song, L. (2018). Learning temporal point processes via reinforcement learning. Advances in Neural Information Processing Systems, 31.
Lorden, G. (1971). Procedures for reacting to a change in distribution. The Annals of Mathematical Statistics, 1897–1908.
Mariani, S., & Cawley, P. (2021). Change detection using the generalized likelihood ratio method to improve the sensitivity of guided wave structural health monitoring systems. Structural Health Monitoring, 20(6), 3201–3226.
Mei, Y. (2006). Sequential change-point detection when unknown parameters are present in the pre-change distribution.
Miller, H., & Mokryn, O. (2020). Size agnostic change point detection framework for evolving networks. Plos One, 15(4), e0231035.
Pollak, M. (1985). Optimal detection of a change in distribution. The Annals of Statistics, 206–227.
Pollak, M. (1987). Average run lengths of an optimal method of detecting a change in distribution. The Annals of Statistics, 749–779.
Raginsky, M., Marcia, R. F., Silva, J., & Willett, R. M. (2009). Sequential probability assignment via online convex programming using exponential families. 2009 IEEE International Symposium on Information Theory, 1338–1342.
Raginsky, M., Willett, R. M., Horn, C., Silva, J., & Marcia, R. F. (2012). Sequential anomaly detection in the presence of noise and limited feedback. IEEE Transactions on Information Theory, 58(8), 5544–5562.
Romano, G., Eckley, I. A., Fearnhead, P., & Rigaill, G. (2023). Fast online changepoint detection via functional pruning CUSUM statistics. Journal of Machine Learning Research, 24, 1–36.
Ruggieri, E., & Antonellis, M. (2016). An exact approach to Bayesian sequential change point detection. Computational Statistics & Data Analysis, 97, 71–86.
Shiryaev, A. N. (1963). On optimum methods in quickest detection problems. Theory of Probability & Its Applications, 8(1), 22–46.
Shiryaev, A. N. (2010). Quickest detection problems: Fifty years later. Sequential Analysis, 29(4), 345–385.
Siegmund, D. O., & Yakir, B. (2008). Minimax optimality of the Shiryayev–Roberts change-point detection rule. Journal of Statistical Planning and Inference, 138(9), 2815–2825.
Song, G., Li, Y., Chen, X., He, X., & Tang, J. (2016). Influential node tracking on dynamic social network: An interchange greedy approach. IEEE Transactions on Knowledge and Data Engineering, 29(2), 359–372.
Tartakovsky, A. G., Rozovskii, B. L., Blazek, R. B., & Kim, H. (2006). A novel approach to detection of intrusions in computer networks via adaptive sequential and batch-sequential change-point detection methods. IEEE Transactions on Signal Processing, 54(9), 3372–3382.
Wang, H., Xie, L., Xie, Y., Cuozzo, A., & Mak, S. (2023). Sequential Change-Point Detection for Mutually Exciting Point Processes. Technometrics, 65(1), 44–56.
Wang, T., & Resnick, S. I. (2021). Common Growth Patterns for Regional Social Networks: A Point Process Approach. Journal of Data Science, 1–24.
Xie, L., Moustakides, G. V, & Xie, Y. (2023). Window-limited CUSUM for sequential change detection. IEEE Transactions on Information Theory.
Zarepour, M., & Habibi, R. (2023). A quasi-Bayesian change point detection with exchangeable weights. Journal of Statistical Planning and Inference, 222, 226–240.
Zhu, X., Li, Y., Liang, C., Chen, J., & Wu, D. (2013). Copula based change point detection for financial contagion in chinese banking. Procedia Computer Science, 17, 619–626.