How to cite this paper
Hong, W., Liu, S., Xu, S & Pu, X. (2024). Truck-drone joint path planning for post-disaster emergency material deployment considering fairness.International Journal of Industrial Engineering Computations , 15(2), 456-472.
Refrences
Agatz, N., Bouman, P., & Schmidt, M. (2018). Optimization approaches for the traveling salesman problem with drone. Transportation Science, 52(4), 965-981.
Alfandari, L., Ljubić, I., & da Silva, M. D. M. (2022). A tailored Benders decomposition approach for last-mile delivery with autonomous robots. European Journal of Operational Research, 299(2), 510-525.
Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International Journal of logistics, 11(2), 101-121.
Biswal, A. K., Jenamani, M., & Kumar, S. K. (2018). Warehouse efficiency improvement using RFID in a humanitarian supply chain: Implications for Indian food security system. Transportation Research Part E: Logistics and Transportation Review, 109, 205-224.
BnnoBRs, J. (1962). Partitioning procedures for solving mixed-variables programming problems. Numer. Math, 4(1), 238-252.
Chang, Y. S., & Lee, H. J. (2018). Optimal delivery routing with wider drone-delivery areas along a shorter truck-route. Expert Systems with Applications, 104, 307-317.
Chowdhury, P., Paul, S. K., Kaisar, S., & Moktadir, M. A. (2021). COVID-19 pandemic related supply chain studies: A systematic review. Transportation Research Part E: Logistics and Transportation Review, 148, 102271.
D'Andrea, R. (2014). Guest editorial can drones deliver?. IEEE Transactions on Automation Science and Engineering, 11(3), 647-648.
Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on evolutionary computation, 1(1), 53-66.
Dorling, K., Heinrichs, J., Messier, G. G., & Magierowski, S. (2016). Vehicle routing problems for drone delivery. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1), 70-85.
Gutjahr, W. J., & Fischer, S. (2018). Equity and deprivation costs in humanitarian logistics. European Journal of Operational Research, 270(1), 185-197.
Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European Journal of Operational Research, 252(2), 351-366.
Holguín-Veras, J., Jaller, M., Van Wassenhove, L. N., Pérez, N., & Wachtendorf, T. (2012). On the unique features of post-disaster humanitarian logistics. Journal of Operations Management, 30(7-8), 494-506.
Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L. N., & Aros-Vera, F. (2013). On the appropriate objective function for post-disaster humanitarian logistics models. Journal of Operations Management, 31(5), 262-280.
Huang, M., Smilowitz, K., & Balcik, B. (2012). Models for relief routing: Equity, efficiency and efficacy. Transportation research part E: logistics and transportation review, 48(1), 2-18.
Jeong, H. Y., Song, B. D., & Lee, S. (2019). Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones. International Journal of Production Economics, 214, 220-233.
Kilic, A., Dincer, M. C., & Gokce, M. A. (2014). Determining optimal treatment rate after a disaster. Journal of the Operational Research Society, 65, 1053-1067.
McCoy, J. H., & Lee, H. L. (2014). Using fairness models to improve equity in health delivery fleet management. Production and Operations Management, 23(6), 965-977.
Moreno, A., Alem, D., Gendreau, M., & Munari, P. (2020). The heterogeneous multicrew scheduling and routing problem in road restoration. Transportation Research Part B: Methodological, 141, 24-58.
Moshref-Javadi, M., Lee, S., & Winkenbach, M. (2020). Design and evaluation of a multi-trip delivery model with truck and drones. Transportation Research Part E: Logistics and Transportation Review, 136, 101887.
Mourelo Ferrandez, S., Harbison, T., Webwer, T., Sturges, R., & Rich, R. (2016). Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm. Journal of Industrial Engineering and Management, 9(2), 374-388.
Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies, 54, 86-109.
Nair, D. J., Grzybowska, H., Fu, Y., & Dixit, V. V. (2018). Scheduling and routing models for food rescue and delivery operations. Socio-Economic Planning Sciences, 63, 18-32.
Najafi, M., Eshghi, K., & Dullaert, W. (2013). A multi-objective robust optimization model for logistics planning in the earthquake response phase. Transportation research part E: logistics and transportation review, 49(1), 217-249.
Pérez-Rodríguez, N., & Holguín-Veras, J. (2016). Inventory-allocation distribution models for postdisaster humanitarian logistics with explicit consideration of deprivation costs. Transportation Science, 50(4), 1261-1285.
Poikonen, S., & Campbell, J. F. (2021). Future directions in drone routing research. Networks, 77(1), 116-126.
Poojari, C. A., & Beasley, J. E. (2009). Improving benders decomposition using a genetic algorithm. European Journal of Operational Research, 199(1), 89-97.
Rodríguez-Espíndola, O., Albores, P., & Brewster, C. (2018). Dynamic formulation for humanitarian response operations incorporating multiple organisations. International Journal of Production Economics, 204, 83-98.
Soleimani, H., Govindan, K., Saghafi, H., & Jafari, H. (2017). Fuzzy multi-objective sustainable and green closed-loop supply chain network design. Computers & industrial engineering, 109, 191-203.
Sun, H., Wang, Y., & Xue, Y. (2021). A bi-objective robust optimization model for disaster response planning under uncertainties. Computers & Industrial Engineering, 155, 107213.
Vu, L., Vu, D. M., Hà, M. H., & Nguyen, V. P. (2022). The two‐echelon routing problem with truck and drones. International Transactions in Operational Research, 29(5), 2968-2994.
Wang, X., Wang, X., Liang, L., Yue, X., & Van Wassenhove, L. N. (2017). Estimation of deprivation level functions using a numerical rating scale. Production and Operations Management, 26(11), 2137-2150.
Wang, Z., & Sheu, J. B. (2019). Vehicle routing problem with drones. Transportation research part B: methodological, 122, 350-364.
Wohlsen, M. (2014). The next big thing you missed: Amazon's delivery drones could work-they just need trucks. https://www.wired.com/2014/06/the-next-big-thing-you-missed-delivery-drones-launched-from-trucks-are-the-future-of-shipping/.
Xiang, Y., & Zhuang, J. (2016). A medical resource allocation model for serving emergency victims with deteriorating health conditions. Annals of Operations Research, 236(1), 177-196.
Yu, L., Zhang, C., Yang, H., & Miao, L. (2018). Novel methods for resource allocation in humanitarian logistics considering human suffering. Computers & Industrial Engineering, 119, 1-20.
Yu, L., Yang, H., Miao, L., & Zhang, C. (2019). Rollout algorithms for resource allocation in humanitarian logistics. IISE Transactions, 51(8), 887-909.
Zhu, L., Gong, Y., Xu, Y., & Gu, J. (2019). Emergency relief routing models for injured victims considering equity and priority. Annals of Operations Research, 283, 1573-1606.
Alfandari, L., Ljubić, I., & da Silva, M. D. M. (2022). A tailored Benders decomposition approach for last-mile delivery with autonomous robots. European Journal of Operational Research, 299(2), 510-525.
Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International Journal of logistics, 11(2), 101-121.
Biswal, A. K., Jenamani, M., & Kumar, S. K. (2018). Warehouse efficiency improvement using RFID in a humanitarian supply chain: Implications for Indian food security system. Transportation Research Part E: Logistics and Transportation Review, 109, 205-224.
BnnoBRs, J. (1962). Partitioning procedures for solving mixed-variables programming problems. Numer. Math, 4(1), 238-252.
Chang, Y. S., & Lee, H. J. (2018). Optimal delivery routing with wider drone-delivery areas along a shorter truck-route. Expert Systems with Applications, 104, 307-317.
Chowdhury, P., Paul, S. K., Kaisar, S., & Moktadir, M. A. (2021). COVID-19 pandemic related supply chain studies: A systematic review. Transportation Research Part E: Logistics and Transportation Review, 148, 102271.
D'Andrea, R. (2014). Guest editorial can drones deliver?. IEEE Transactions on Automation Science and Engineering, 11(3), 647-648.
Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on evolutionary computation, 1(1), 53-66.
Dorling, K., Heinrichs, J., Messier, G. G., & Magierowski, S. (2016). Vehicle routing problems for drone delivery. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1), 70-85.
Gutjahr, W. J., & Fischer, S. (2018). Equity and deprivation costs in humanitarian logistics. European Journal of Operational Research, 270(1), 185-197.
Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European Journal of Operational Research, 252(2), 351-366.
Holguín-Veras, J., Jaller, M., Van Wassenhove, L. N., Pérez, N., & Wachtendorf, T. (2012). On the unique features of post-disaster humanitarian logistics. Journal of Operations Management, 30(7-8), 494-506.
Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L. N., & Aros-Vera, F. (2013). On the appropriate objective function for post-disaster humanitarian logistics models. Journal of Operations Management, 31(5), 262-280.
Huang, M., Smilowitz, K., & Balcik, B. (2012). Models for relief routing: Equity, efficiency and efficacy. Transportation research part E: logistics and transportation review, 48(1), 2-18.
Jeong, H. Y., Song, B. D., & Lee, S. (2019). Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones. International Journal of Production Economics, 214, 220-233.
Kilic, A., Dincer, M. C., & Gokce, M. A. (2014). Determining optimal treatment rate after a disaster. Journal of the Operational Research Society, 65, 1053-1067.
McCoy, J. H., & Lee, H. L. (2014). Using fairness models to improve equity in health delivery fleet management. Production and Operations Management, 23(6), 965-977.
Moreno, A., Alem, D., Gendreau, M., & Munari, P. (2020). The heterogeneous multicrew scheduling and routing problem in road restoration. Transportation Research Part B: Methodological, 141, 24-58.
Moshref-Javadi, M., Lee, S., & Winkenbach, M. (2020). Design and evaluation of a multi-trip delivery model with truck and drones. Transportation Research Part E: Logistics and Transportation Review, 136, 101887.
Mourelo Ferrandez, S., Harbison, T., Webwer, T., Sturges, R., & Rich, R. (2016). Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm. Journal of Industrial Engineering and Management, 9(2), 374-388.
Murray, C. C., & Chu, A. G. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies, 54, 86-109.
Nair, D. J., Grzybowska, H., Fu, Y., & Dixit, V. V. (2018). Scheduling and routing models for food rescue and delivery operations. Socio-Economic Planning Sciences, 63, 18-32.
Najafi, M., Eshghi, K., & Dullaert, W. (2013). A multi-objective robust optimization model for logistics planning in the earthquake response phase. Transportation research part E: logistics and transportation review, 49(1), 217-249.
Pérez-Rodríguez, N., & Holguín-Veras, J. (2016). Inventory-allocation distribution models for postdisaster humanitarian logistics with explicit consideration of deprivation costs. Transportation Science, 50(4), 1261-1285.
Poikonen, S., & Campbell, J. F. (2021). Future directions in drone routing research. Networks, 77(1), 116-126.
Poojari, C. A., & Beasley, J. E. (2009). Improving benders decomposition using a genetic algorithm. European Journal of Operational Research, 199(1), 89-97.
Rodríguez-Espíndola, O., Albores, P., & Brewster, C. (2018). Dynamic formulation for humanitarian response operations incorporating multiple organisations. International Journal of Production Economics, 204, 83-98.
Soleimani, H., Govindan, K., Saghafi, H., & Jafari, H. (2017). Fuzzy multi-objective sustainable and green closed-loop supply chain network design. Computers & industrial engineering, 109, 191-203.
Sun, H., Wang, Y., & Xue, Y. (2021). A bi-objective robust optimization model for disaster response planning under uncertainties. Computers & Industrial Engineering, 155, 107213.
Vu, L., Vu, D. M., Hà, M. H., & Nguyen, V. P. (2022). The two‐echelon routing problem with truck and drones. International Transactions in Operational Research, 29(5), 2968-2994.
Wang, X., Wang, X., Liang, L., Yue, X., & Van Wassenhove, L. N. (2017). Estimation of deprivation level functions using a numerical rating scale. Production and Operations Management, 26(11), 2137-2150.
Wang, Z., & Sheu, J. B. (2019). Vehicle routing problem with drones. Transportation research part B: methodological, 122, 350-364.
Wohlsen, M. (2014). The next big thing you missed: Amazon's delivery drones could work-they just need trucks. https://www.wired.com/2014/06/the-next-big-thing-you-missed-delivery-drones-launched-from-trucks-are-the-future-of-shipping/.
Xiang, Y., & Zhuang, J. (2016). A medical resource allocation model for serving emergency victims with deteriorating health conditions. Annals of Operations Research, 236(1), 177-196.
Yu, L., Zhang, C., Yang, H., & Miao, L. (2018). Novel methods for resource allocation in humanitarian logistics considering human suffering. Computers & Industrial Engineering, 119, 1-20.
Yu, L., Yang, H., Miao, L., & Zhang, C. (2019). Rollout algorithms for resource allocation in humanitarian logistics. IISE Transactions, 51(8), 887-909.
Zhu, L., Gong, Y., Xu, Y., & Gu, J. (2019). Emergency relief routing models for injured victims considering equity and priority. Annals of Operations Research, 283, 1573-1606.