How to cite this paper
Londoño, A., Gonzalez, W., Giraldo, O & Escobar, J. (2023). A new matheheuristic approach based on Chu-Beasley genetic approach for the multi-depot electric vehicle routing problem.International Journal of Industrial Engineering Computations , 14(3), 555-570.
Refrences
Arias, A., Sanchez, J., & Granada, M. (2018). Integrated planning of electric vehicles routing and charging stations location considering transportation networks and power distribution systems. International Journal of Industrial Engineering Computations, 9(4), 535-550.
Arias-Londoño, A., Montoya, O. D., & Grisales-Noreña, L. F. (2020). A chronological literature review of electric vehicle interactions with power distribution systems. Energies, 13(11), 3016.
Arias-Londoño, A., Gil-González, W., & Montoya, O. D. (2021). A linearized approach for the electric light commercial vehicle routing problem combined with charging station siting and power distribution network assessment. Applied Sciences, 11(11), 4870.
Bernal, J., Escobar, J. W., & Linfati, R. (2017). A granular tabu search algorithm for a real case study of a vehicle routing problem with a heterogeneous fleet and time windows. Journal of Industrial Engineering and Management, 10(4), 646-662.
Bernal, J., Escobar, J. W., Paz, J. C., Linfati, R., & Gatica, G. (2018). A probabilistic granular tabu search for the distance constrained capacitated vehicle routing problem. International Journal of Industrial and Systems Engineering, 29(4), 453-477.
Bernal, J., Escobar, J. W., & Linfati, R. (2021). A simulated annealing-based approach for a real case study of vehicle routing problem with a heterogeneous fleet and time windows. International Journal of Shipping and Transport Logistics, 13(1-2), 185-204.
Cataldo-Díaz, C., Linfati, R., & Escobar, J. W. (2022). Mathematical Model for the Electric Vehicle Routing Problem Considering the State of Charge of the Batteries. Sustainability, 14(3), 1645.
Chang, G. W., Chu, S. Y., & Wang, H. L. (2007). An improved backward/forward sweep load flow algorithm for radial distribution systems. IEEE Transactions on power systems, 22(2), 882-884.
Christensen, L., Klauenberg, J., Kveiborg, O., & Rudolph, C. (2017). Suitability of commercial transport for a shift to electric mobility with Denmark and Germany as use cases. Research in Transportation Economics, 64, 48-60.
Chu, P. C., & Beasley, J. E. (1997). A genetic algorithm for the generalised assignment problem. Computers & Operations Research, 24(1), 17-23.
Escobar, J. W., & Linfati, R. (2012). Un algoritmo metaheurístico basado en recocido simulado con espacio de búsqueda granular para el problema de localización y ruteo con restricciones de capacidad. Revista Ingenierías Universidad de Medellín, 11(21), 139-150.
Escobar, J., Duque, J., & García-Cáceres, R. (2022). A granular tabu search for the refrigerated vehicle routing problem with homogeneous fleet. International Journal of Industrial Engineering Computations, 13(1), 135-150.
Fan, H., Zhang, Y., Tian, P., Lv, Y., & Fan, H. (2021). Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance. Computers & Operations Research, 129, 105211.
GAMS, 2021. CPLEX 12, Washington: s.n.
Grisales-Noreña, L. F., Gonzalez Montoya, D., & Ramos-Paja, C. A. (2018). Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies, 11(4), 1018.
Hydro Quebec )2015(. Electric vehicle charging stations: Technical installation guide, s.l.: s.n.
Jabir, E., Panicker, V. V., & Sridharan, R. (2017). Design and development of a hybrid ant colony-variable neighbourhood search algorithm for a multi-depot green vehicle routing problem. Transportation Research Part D: Transport and Environment, 57, 422-457.
Juan, A. A., Mendez, C. A., Faulin, J., De Armas, J., & Grasman, S. E. (2016). Electric vehicles in logistics and transportation: A survey on emerging environmental, strategic, and operational challenges. Energies, 9(2), 86.
Juvvala, R., & Sarmah, S. P. (2021). Evaluation of policy options supporting electric vehicles in city logistics: a case study. Sustainable Cities and Society, 74, 103209.
Li, Y., Soleimani, H., & Zohal, M. (2019). An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives. Journal of Cleaner Production, 227, 1161-1172.
Li, Y., Qian, B., Hu, R., Wu, L. P., & Liu, B. (2019). Two-stage algorithm for solving multi-depot green vehicle routing problem with time window. In International Conference on Intelligent Computing (pp. 665-675). Springer, Cham.
Lin, C., Choy, K. L., Ho, G. T., Chung, S. H., & Lam, H. Y. (2014). Survey of green vehicle routing problem: past and future trends. Expert Systems with Applications, 41(4), 1118-1138.
Linfati, R., Escobar, J. W., & Cuevas, B. (2014). An algorithm based on granular tabu search for the problem of balancing public bikes by using multiple vehicles. Dyna, 81(186), 284-294.
Londoño, A., & Granada-Echeverri, M. (2019). Optimal placement of freight electric vehicles charging stations and their impact on the power distribution network. International Journal of Industrial Engineering Computations, 10(4), 535-556.
Montoya, O. D., Grisales-Noreña, L. F., Amin, W. T., Rojas, L. A., & Campillo, J. (2019). Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology. In Workshop on Engineering Applications (pp. 235-249). Springer, Cham.
Networking and Emerging Optimization, 2013. Multiple Depot VRP Instances. [Online]
Available at: https://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances/
Nicholas, M.) 2019). Estimating electric vehicle charging infrastructure costs across major U.S. metropolitan areas , s.l.: International Council on Clean Transportation.
Normasari, N. M. E., & Lathifah, N. (2021). Heterogeneous Fleet Green Vehicle Routing Problem: A Literature. Annals of Operation Research, forthcoming, 1(1).
Paz, J., Granada-Echeverri, M., & Escobar, J. (2018). The multi-depot electric vehicle location routing problem with time windows. International Journal of Industrial Engineering Computations, 9(1), 123-136.
Pevec, D., Babic, J., Carvalho, A., Ghiassi-Farrokhfal, Y., Ketter, W., & Podobnik, V. (2020). A survey-based assessment of how existing and potential electric vehicle owners perceive range anxiety. Journal of Cleaner Production, 276, 122779.
Puenayán, D. E., Londoño, J. C., Escobar, J. W., & Linfati, R. (2014). Un algoritmo basado en búsqueda tabú granular para la solución de un problema de ruteo de vehículos considerando flota heterogénea. Revista Ingenierías Universidad de Medellín, 13(25), 81-98.
Ramos, T. R. P., Gomes, M. I., & Póvoa, A. P. B. (2020). Multi-depot vehicle routing problem: a comparative study of alternative formulations. International Journal of Logistics Research and Applications, 23(2), 103-120.
Sadati, M. E. H., & Çatay, B. (2021). A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 149, 102293.
Sharma, S., Panwar, A. K., & Tripathi, M. M. (2020). Storage technologies for electric vehicles. Journal of Traffic and Transportation Engineering, 7(3), 340-361.
Vieira, Y. E. M., de Mello Bandeira, R. A., & da Silva Júnior, O. S. (2021). Multi-depot vehicle routing problem for large scale disaster relief in drought scenarios: The case of the Brazilian northeast region. International Journal of Disaster Risk Reduction, 58, 102193.
Wang, Y., Assogba, K., Fan, J., Xu, M., Liu, Y., & Wang, H. (2019). Multi-depot green vehicle routing problem with shared transportation resource: Integration of time-dependent speed and piecewise penalty cost. Journal of Cleaner Production, 232, 12-29.
Wang, C., Guo, C., & Zuo, X. (2021a). Solving multi-depot electric vehicle scheduling problem by column generation and genetic algorithm. Applied Soft Computing, 112, 107774.
Wang, Y., Li, Q., Guan, X., Fan, J., Xu, M., & Wang, H. (2021b). Collaborative multi-depot pickup and delivery vehicle routing problem with split loads and time windows. Knowledge-Based Systems, 231, 107412.
Zhang, W., Gajpal, Y., Appadoo, S., & Wei, Q. (2020). Multi-depot green vehicle routing problem to minimize carbon emissions. Sustainability, 12(8), 3500.
Zhu, X., Yan, R., Huang, Z., Wei, W., Yang, J., & Kudratova, S. (2020). Logistic optimization for multi depots loading capacitated electric vehicle routing problem from low carbon perspective. IEEE Access, 8, 31934-31947.
Arias-Londoño, A., Montoya, O. D., & Grisales-Noreña, L. F. (2020). A chronological literature review of electric vehicle interactions with power distribution systems. Energies, 13(11), 3016.
Arias-Londoño, A., Gil-González, W., & Montoya, O. D. (2021). A linearized approach for the electric light commercial vehicle routing problem combined with charging station siting and power distribution network assessment. Applied Sciences, 11(11), 4870.
Bernal, J., Escobar, J. W., & Linfati, R. (2017). A granular tabu search algorithm for a real case study of a vehicle routing problem with a heterogeneous fleet and time windows. Journal of Industrial Engineering and Management, 10(4), 646-662.
Bernal, J., Escobar, J. W., Paz, J. C., Linfati, R., & Gatica, G. (2018). A probabilistic granular tabu search for the distance constrained capacitated vehicle routing problem. International Journal of Industrial and Systems Engineering, 29(4), 453-477.
Bernal, J., Escobar, J. W., & Linfati, R. (2021). A simulated annealing-based approach for a real case study of vehicle routing problem with a heterogeneous fleet and time windows. International Journal of Shipping and Transport Logistics, 13(1-2), 185-204.
Cataldo-Díaz, C., Linfati, R., & Escobar, J. W. (2022). Mathematical Model for the Electric Vehicle Routing Problem Considering the State of Charge of the Batteries. Sustainability, 14(3), 1645.
Chang, G. W., Chu, S. Y., & Wang, H. L. (2007). An improved backward/forward sweep load flow algorithm for radial distribution systems. IEEE Transactions on power systems, 22(2), 882-884.
Christensen, L., Klauenberg, J., Kveiborg, O., & Rudolph, C. (2017). Suitability of commercial transport for a shift to electric mobility with Denmark and Germany as use cases. Research in Transportation Economics, 64, 48-60.
Chu, P. C., & Beasley, J. E. (1997). A genetic algorithm for the generalised assignment problem. Computers & Operations Research, 24(1), 17-23.
Escobar, J. W., & Linfati, R. (2012). Un algoritmo metaheurístico basado en recocido simulado con espacio de búsqueda granular para el problema de localización y ruteo con restricciones de capacidad. Revista Ingenierías Universidad de Medellín, 11(21), 139-150.
Escobar, J., Duque, J., & García-Cáceres, R. (2022). A granular tabu search for the refrigerated vehicle routing problem with homogeneous fleet. International Journal of Industrial Engineering Computations, 13(1), 135-150.
Fan, H., Zhang, Y., Tian, P., Lv, Y., & Fan, H. (2021). Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance. Computers & Operations Research, 129, 105211.
GAMS, 2021. CPLEX 12, Washington: s.n.
Grisales-Noreña, L. F., Gonzalez Montoya, D., & Ramos-Paja, C. A. (2018). Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies, 11(4), 1018.
Hydro Quebec )2015(. Electric vehicle charging stations: Technical installation guide, s.l.: s.n.
Jabir, E., Panicker, V. V., & Sridharan, R. (2017). Design and development of a hybrid ant colony-variable neighbourhood search algorithm for a multi-depot green vehicle routing problem. Transportation Research Part D: Transport and Environment, 57, 422-457.
Juan, A. A., Mendez, C. A., Faulin, J., De Armas, J., & Grasman, S. E. (2016). Electric vehicles in logistics and transportation: A survey on emerging environmental, strategic, and operational challenges. Energies, 9(2), 86.
Juvvala, R., & Sarmah, S. P. (2021). Evaluation of policy options supporting electric vehicles in city logistics: a case study. Sustainable Cities and Society, 74, 103209.
Li, Y., Soleimani, H., & Zohal, M. (2019). An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives. Journal of Cleaner Production, 227, 1161-1172.
Li, Y., Qian, B., Hu, R., Wu, L. P., & Liu, B. (2019). Two-stage algorithm for solving multi-depot green vehicle routing problem with time window. In International Conference on Intelligent Computing (pp. 665-675). Springer, Cham.
Lin, C., Choy, K. L., Ho, G. T., Chung, S. H., & Lam, H. Y. (2014). Survey of green vehicle routing problem: past and future trends. Expert Systems with Applications, 41(4), 1118-1138.
Linfati, R., Escobar, J. W., & Cuevas, B. (2014). An algorithm based on granular tabu search for the problem of balancing public bikes by using multiple vehicles. Dyna, 81(186), 284-294.
Londoño, A., & Granada-Echeverri, M. (2019). Optimal placement of freight electric vehicles charging stations and their impact on the power distribution network. International Journal of Industrial Engineering Computations, 10(4), 535-556.
Montoya, O. D., Grisales-Noreña, L. F., Amin, W. T., Rojas, L. A., & Campillo, J. (2019). Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology. In Workshop on Engineering Applications (pp. 235-249). Springer, Cham.
Networking and Emerging Optimization, 2013. Multiple Depot VRP Instances. [Online]
Available at: https://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances/
Nicholas, M.) 2019). Estimating electric vehicle charging infrastructure costs across major U.S. metropolitan areas , s.l.: International Council on Clean Transportation.
Normasari, N. M. E., & Lathifah, N. (2021). Heterogeneous Fleet Green Vehicle Routing Problem: A Literature. Annals of Operation Research, forthcoming, 1(1).
Paz, J., Granada-Echeverri, M., & Escobar, J. (2018). The multi-depot electric vehicle location routing problem with time windows. International Journal of Industrial Engineering Computations, 9(1), 123-136.
Pevec, D., Babic, J., Carvalho, A., Ghiassi-Farrokhfal, Y., Ketter, W., & Podobnik, V. (2020). A survey-based assessment of how existing and potential electric vehicle owners perceive range anxiety. Journal of Cleaner Production, 276, 122779.
Puenayán, D. E., Londoño, J. C., Escobar, J. W., & Linfati, R. (2014). Un algoritmo basado en búsqueda tabú granular para la solución de un problema de ruteo de vehículos considerando flota heterogénea. Revista Ingenierías Universidad de Medellín, 13(25), 81-98.
Ramos, T. R. P., Gomes, M. I., & Póvoa, A. P. B. (2020). Multi-depot vehicle routing problem: a comparative study of alternative formulations. International Journal of Logistics Research and Applications, 23(2), 103-120.
Sadati, M. E. H., & Çatay, B. (2021). A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 149, 102293.
Sharma, S., Panwar, A. K., & Tripathi, M. M. (2020). Storage technologies for electric vehicles. Journal of Traffic and Transportation Engineering, 7(3), 340-361.
Vieira, Y. E. M., de Mello Bandeira, R. A., & da Silva Júnior, O. S. (2021). Multi-depot vehicle routing problem for large scale disaster relief in drought scenarios: The case of the Brazilian northeast region. International Journal of Disaster Risk Reduction, 58, 102193.
Wang, Y., Assogba, K., Fan, J., Xu, M., Liu, Y., & Wang, H. (2019). Multi-depot green vehicle routing problem with shared transportation resource: Integration of time-dependent speed and piecewise penalty cost. Journal of Cleaner Production, 232, 12-29.
Wang, C., Guo, C., & Zuo, X. (2021a). Solving multi-depot electric vehicle scheduling problem by column generation and genetic algorithm. Applied Soft Computing, 112, 107774.
Wang, Y., Li, Q., Guan, X., Fan, J., Xu, M., & Wang, H. (2021b). Collaborative multi-depot pickup and delivery vehicle routing problem with split loads and time windows. Knowledge-Based Systems, 231, 107412.
Zhang, W., Gajpal, Y., Appadoo, S., & Wei, Q. (2020). Multi-depot green vehicle routing problem to minimize carbon emissions. Sustainability, 12(8), 3500.
Zhu, X., Yan, R., Huang, Z., Wei, W., Yang, J., & Kudratova, S. (2020). Logistic optimization for multi depots loading capacitated electric vehicle routing problem from low carbon perspective. IEEE Access, 8, 31934-31947.