How to cite this paper
Bruno, G., Cavola, M., Diglio, A & Piccolo, C. (2023). A unifying framework and a mathematical model for the Slab Stack Shuffling Problem.International Journal of Industrial Engineering Computations , 14(1), 17-32.
Refrences
Avriel, M., & Penn, M. (1993). Exact and approximate solutions of the container ship stowage problem. Computers & Industrial Engineering, 25(1-4), 271-274.
BRS GROUP, (2021). Shipping and Shipbuilding Markets, Annual Review. URL: https://www.brsbrokers.com [accessed on Oct 18, 2021].
Bortfeldt, A., & Forster, F. (2012). A tree search procedure for the container pre-marshalling problem. European Journal of Operational Research, 217(3), 531-540.
Caserta, M., Schwarze, S., & Voß, S. (2012). A mathematical formulation and complexity considerations for the blocks relocation problem. European Journal of Operational Research, 219(1), 96-104.
Caserta, M., Schwarze, S., & Voß, S. (2020). Container rehandling at maritime container terminals: A literature update. Handbook of Terminal Planning, 343-382.
Cheng, X., & Tang, L. (2010). A scatter search algorithm for the slab stack shuffling problem. In International Conference in Swarm Intelligence (pp. 382-389). Springer, Berlin, Heidelberg.
Dekker, R., Voogd, P., & Van Asperen, E. (2007). Advanced methods for container stacking. In Container terminals and cargo systems (pp. 131-154). Springer, Berlin, Heidelberg.
Deng, X. Y. (2014). A parallel optimisation algorithm for steel plate pick-up operation scheduling problem. International Journal of Simulation Modelling, 13(3), 323-334.
Ding, D., & Chou, M. C. (2015). Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts. European Journal of Operational Research, 246(1), 242-249.
Fernandes, E. F. A., Freire, L., Passos, A. C., & Street, A. (2012). Solving the non-linear slab stack shuffling problem using linear binary integer programming. EngOpt.
Ferrari, C. (2012). Cantieristica navale: caratteristiche e tendenze di un mercato globale. Impresa Progetto-Electronic Journal of Management, 3.
Forster, F., & Bortfeldt, A. (2012). A tree search procedure for the container relocation problem. Computers & Operations Research, 39(2), 299-309.
Huang, S. H., & Lin, T. H. (2012). Heuristic algorithms for container pre-marshalling problems. Computers & Industrial Engineering, 62(1), 13-20.
Jang, D. W., Kim, S. W., & Kim, K. H. (2013). The optimization of mixed block stacking requiring relocations. International Journal of Production Economics, 143(2), 256-262.
Kim, K. H., Park, Y. M., & Ryu, K. R. (2000). Deriving decision rules to locate export containers in container yards. European Journal of Operational Research, 124(1), 89-101.
Kim, Y., Kim, T., & Lee, H. (2016). Heuristic algorithm for retrieving containers. Computers & Industrial Engineering, 101, 352-360.
Lehnfeld, J., & Knust, S. (2014). Loading, unloading and premarshalling of stacks in storage areas: Survey and classification. European Journal of Operational Research, 239(2), 297-312.
Liyun, X., Zhongyu, S., & Liansheng, Y. (2020). Steel plate scheduling optimisation in shipbuilding based on storage area partition. Procedia CIRP, 93, 1001-1006.
Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation, 213(2), 455-465.
Nersesian, R., & Mahmood, S. (2010). International Association Of Classification Societies. In Handbook of Transnational Economic Governance Regimes (pp. 765-774). Brill Nijhoff.
Rajabi, P., Moslehi, G., & Reisi-Nafchi, M. (2022). New integer programming models for slab stack shuffling problems. Applied Mathematical Modelling, 109, 775-796
Ren, H., & Tang, L. (2010). Modeling and an ILP-based algorithm framework for the slab stack shuffling problem considering crane scheduling. In 2010 International Conference on Computing, Control and Industrial Engineering (Vol. 2, pp. 3-6).
Shi, Y., & Liu, S. (2021). Very Large-Scale Neighborhood Search for Steel Hot Rolling Scheduling Problem With Slab Stack Shuffling Considerations. IEEE Access, 9, 47856-47863.
Singh, K. A., & Tiwari, M. K. (2004). Modelling the slab stack shuffling problem in developing steel rolling schedules and its solution using improved Parallel Genetic Algorithms. International Journal of Production Economics, 91(2), 135-147.
Tang, L., Liu, J., Rong, A., & Yang, Z. (2001). An effective heuristic algorithm to minimise stack shuffles in selecting steel slabs from the slab yard for heating and rolling. Journal of the Operational Research Society, 52(10), 1091-1097.
Tang, L., Liu, J., Rong, A., & Yang, Z. (2002). Modelling and a genetic algorithm solution for the slab stack shuffling problem when implementing steel rolling schedules. International Journal of Production Research, 40(7), 1583-1595.
Tang, L., & Ren, H. (2010). Modelling and a segmented dynamic programming-based heuristic approach for the slab stack shuffling problem. Computers & Operations Research, 37(2), 368-375.
Wang, G., Jin, C., & Deng, X. (2008, September). Modeling and optimisation on steel plate pick-up operation scheduling on stackyard of shipyard. In 2008 IEEE International Conference on Automation and Logistics (pp. 548-553). IEEE.
Zhong, Y., Xue, K., & Shi, D. (2013). Assembly unit partitioning for hull structure in shipbuilding. Computer-Aided Design, 45(12), 1630-1638.
BRS GROUP, (2021). Shipping and Shipbuilding Markets, Annual Review. URL: https://www.brsbrokers.com [accessed on Oct 18, 2021].
Bortfeldt, A., & Forster, F. (2012). A tree search procedure for the container pre-marshalling problem. European Journal of Operational Research, 217(3), 531-540.
Caserta, M., Schwarze, S., & Voß, S. (2012). A mathematical formulation and complexity considerations for the blocks relocation problem. European Journal of Operational Research, 219(1), 96-104.
Caserta, M., Schwarze, S., & Voß, S. (2020). Container rehandling at maritime container terminals: A literature update. Handbook of Terminal Planning, 343-382.
Cheng, X., & Tang, L. (2010). A scatter search algorithm for the slab stack shuffling problem. In International Conference in Swarm Intelligence (pp. 382-389). Springer, Berlin, Heidelberg.
Dekker, R., Voogd, P., & Van Asperen, E. (2007). Advanced methods for container stacking. In Container terminals and cargo systems (pp. 131-154). Springer, Berlin, Heidelberg.
Deng, X. Y. (2014). A parallel optimisation algorithm for steel plate pick-up operation scheduling problem. International Journal of Simulation Modelling, 13(3), 323-334.
Ding, D., & Chou, M. C. (2015). Stowage planning for container ships: A heuristic algorithm to reduce the number of shifts. European Journal of Operational Research, 246(1), 242-249.
Fernandes, E. F. A., Freire, L., Passos, A. C., & Street, A. (2012). Solving the non-linear slab stack shuffling problem using linear binary integer programming. EngOpt.
Ferrari, C. (2012). Cantieristica navale: caratteristiche e tendenze di un mercato globale. Impresa Progetto-Electronic Journal of Management, 3.
Forster, F., & Bortfeldt, A. (2012). A tree search procedure for the container relocation problem. Computers & Operations Research, 39(2), 299-309.
Huang, S. H., & Lin, T. H. (2012). Heuristic algorithms for container pre-marshalling problems. Computers & Industrial Engineering, 62(1), 13-20.
Jang, D. W., Kim, S. W., & Kim, K. H. (2013). The optimization of mixed block stacking requiring relocations. International Journal of Production Economics, 143(2), 256-262.
Kim, K. H., Park, Y. M., & Ryu, K. R. (2000). Deriving decision rules to locate export containers in container yards. European Journal of Operational Research, 124(1), 89-101.
Kim, Y., Kim, T., & Lee, H. (2016). Heuristic algorithm for retrieving containers. Computers & Industrial Engineering, 101, 352-360.
Lehnfeld, J., & Knust, S. (2014). Loading, unloading and premarshalling of stacks in storage areas: Survey and classification. European Journal of Operational Research, 239(2), 297-312.
Liyun, X., Zhongyu, S., & Liansheng, Y. (2020). Steel plate scheduling optimisation in shipbuilding based on storage area partition. Procedia CIRP, 93, 1001-1006.
Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation, 213(2), 455-465.
Nersesian, R., & Mahmood, S. (2010). International Association Of Classification Societies. In Handbook of Transnational Economic Governance Regimes (pp. 765-774). Brill Nijhoff.
Rajabi, P., Moslehi, G., & Reisi-Nafchi, M. (2022). New integer programming models for slab stack shuffling problems. Applied Mathematical Modelling, 109, 775-796
Ren, H., & Tang, L. (2010). Modeling and an ILP-based algorithm framework for the slab stack shuffling problem considering crane scheduling. In 2010 International Conference on Computing, Control and Industrial Engineering (Vol. 2, pp. 3-6).
Shi, Y., & Liu, S. (2021). Very Large-Scale Neighborhood Search for Steel Hot Rolling Scheduling Problem With Slab Stack Shuffling Considerations. IEEE Access, 9, 47856-47863.
Singh, K. A., & Tiwari, M. K. (2004). Modelling the slab stack shuffling problem in developing steel rolling schedules and its solution using improved Parallel Genetic Algorithms. International Journal of Production Economics, 91(2), 135-147.
Tang, L., Liu, J., Rong, A., & Yang, Z. (2001). An effective heuristic algorithm to minimise stack shuffles in selecting steel slabs from the slab yard for heating and rolling. Journal of the Operational Research Society, 52(10), 1091-1097.
Tang, L., Liu, J., Rong, A., & Yang, Z. (2002). Modelling and a genetic algorithm solution for the slab stack shuffling problem when implementing steel rolling schedules. International Journal of Production Research, 40(7), 1583-1595.
Tang, L., & Ren, H. (2010). Modelling and a segmented dynamic programming-based heuristic approach for the slab stack shuffling problem. Computers & Operations Research, 37(2), 368-375.
Wang, G., Jin, C., & Deng, X. (2008, September). Modeling and optimisation on steel plate pick-up operation scheduling on stackyard of shipyard. In 2008 IEEE International Conference on Automation and Logistics (pp. 548-553). IEEE.
Zhong, Y., Xue, K., & Shi, D. (2013). Assembly unit partitioning for hull structure in shipbuilding. Computer-Aided Design, 45(12), 1630-1638.