How to cite this paper
Prakash, A., Balakrishna, U & Thenepalle, J. (2022). An exact algorithm for constrained k-cardinality unbalanced assignment problem.International Journal of Industrial Engineering Computations , 13(2), 267-276.
Refrences
Arora, S., & Puri, M. C. (1998). A variant of time minimizing assignment problem. European Journal of Operational Research, 110(2), 314-325.
Bai, G. Z. (2009, December). A new algorithm for k-cardinality assignment problem. In 2009 International Conference on Computational Intelligence and Software Engineering (pp. 1-4). IEEE.
Belik, I., & Jörnsten, K. (2016). A new Semi-Lagrangean Relaxation for the k-cardinality assignment problem. Journal of Information and Optimization Sciences, 37(1), 75-100.
Bhavani, V., & Murthy, M. S. (2006). Truncated M-travelling salesmen problem. Opsearch, 43(2), 152-177.
Bhunia, A. K., Biswas, A., & Samanta, S. S. (2017). A genetic algorithm-based approach for unbalanced assignment problem in interval environment. International Journal of Logistics Systems and Management, 27(1), 62-77.
Dell'Amico, M., & Martello, S. (1997). The k-cardinality assignment problem. Discrete Applied Mathematics, 76(1-3), 103-121.
Dell'Amico, M., Lodi, A., & Martello, S. (2001). Efficient algorithms and codes for k-cardinality assignment problems. Discrete Applied Mathematics, 110(1), 25-40.
Feng, Y., & Yang, L. (2006). A two-objective fuzzy k-cardinality assignment problem. Journal of Computational and Applied Mathematics, 197(1), 233-244.
Gabrovšek, B., Novak, T., Povh, J., Rupnik Poklukar, D., & Žerovnik, J. (2020). Multiple Hungarian Method for k-Assignment Problem. Mathematics, 8(11), 2050.
Iampang, A., Boonjing, V., & Chanvarasuth, P. (2010, December). A cost and space efficient method for unbalanced assignment problems. In 2010 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 985-988). IEEE.
Votaw, D.F., & Orden, A. (1952) ‘The personnel assignment problem’, Symposium on Linear Inequalities and Programming, Scoop 10, US Air Force, pp.155–163.
Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1‐2), 83-97.
Kumar, A. (2006). A modified method for solving the unbalanced assignment problems. Applied Mathematics and Computation, 176(1), 76-82.
Kumar, T. J., & Purusotham, S. (2017). An exact algorithm for k-cardinality degree constrained clustered minimum spanning tree problem. In IOP Conf. Ser. Mater. Sci. Eng. (Vol. 263, p. 042112).
Kumar, T., & Purusotham, S. (2018). The degree constrained k-cardinality minimum spanning tree problem: a lexi-search algorithm. Decision Science Letters, 7(3), 301-310.
Majumdar, J., & Bhunia, A. K. (2012). An alternative approach for unbalanced assignment problem via genetic algorithm. Applied Mathematics and Computation, 218(12), 6934-6941.
Malhotra, R., & Bhatia, H. L. (1984). Variants of the time minimization assignment problem. Trab. Estad. Invest. Oper., 35(3), 331-338.
Sundara Murthy, M. (1976). A bulk transportation problem. Opsearch, 13(3-4), 143-155.
Thenepalle, J. K., & Singamsetty, P. (2018). Bi-criteria travelling salesman subtour problem with time threshold. The European Physical Journal Plus, 133(3), 1-15.
Thenepalle, J. K., & Singamsetty, P. (2019). Lexi-search algorithm for one to many multidimensional bi-criteria unbalanced assignment problem. International Journal of Bio-Inspired Computation, 14(3), 151-170.
Volgenant, A. (2004). Solving the k-cardinality assignment problem by transformation. European Journal of Operational Research, 157(2), 322-331.
Yadaiah, V., & Haragopal, V. V. (2016). A new approach of solving single objective unbalanced assignment problem. American Journal of Operations Research, 6(1), 81-89.
Bai, G. Z. (2009, December). A new algorithm for k-cardinality assignment problem. In 2009 International Conference on Computational Intelligence and Software Engineering (pp. 1-4). IEEE.
Belik, I., & Jörnsten, K. (2016). A new Semi-Lagrangean Relaxation for the k-cardinality assignment problem. Journal of Information and Optimization Sciences, 37(1), 75-100.
Bhavani, V., & Murthy, M. S. (2006). Truncated M-travelling salesmen problem. Opsearch, 43(2), 152-177.
Bhunia, A. K., Biswas, A., & Samanta, S. S. (2017). A genetic algorithm-based approach for unbalanced assignment problem in interval environment. International Journal of Logistics Systems and Management, 27(1), 62-77.
Dell'Amico, M., & Martello, S. (1997). The k-cardinality assignment problem. Discrete Applied Mathematics, 76(1-3), 103-121.
Dell'Amico, M., Lodi, A., & Martello, S. (2001). Efficient algorithms and codes for k-cardinality assignment problems. Discrete Applied Mathematics, 110(1), 25-40.
Feng, Y., & Yang, L. (2006). A two-objective fuzzy k-cardinality assignment problem. Journal of Computational and Applied Mathematics, 197(1), 233-244.
Gabrovšek, B., Novak, T., Povh, J., Rupnik Poklukar, D., & Žerovnik, J. (2020). Multiple Hungarian Method for k-Assignment Problem. Mathematics, 8(11), 2050.
Iampang, A., Boonjing, V., & Chanvarasuth, P. (2010, December). A cost and space efficient method for unbalanced assignment problems. In 2010 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 985-988). IEEE.
Votaw, D.F., & Orden, A. (1952) ‘The personnel assignment problem’, Symposium on Linear Inequalities and Programming, Scoop 10, US Air Force, pp.155–163.
Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1‐2), 83-97.
Kumar, A. (2006). A modified method for solving the unbalanced assignment problems. Applied Mathematics and Computation, 176(1), 76-82.
Kumar, T. J., & Purusotham, S. (2017). An exact algorithm for k-cardinality degree constrained clustered minimum spanning tree problem. In IOP Conf. Ser. Mater. Sci. Eng. (Vol. 263, p. 042112).
Kumar, T., & Purusotham, S. (2018). The degree constrained k-cardinality minimum spanning tree problem: a lexi-search algorithm. Decision Science Letters, 7(3), 301-310.
Majumdar, J., & Bhunia, A. K. (2012). An alternative approach for unbalanced assignment problem via genetic algorithm. Applied Mathematics and Computation, 218(12), 6934-6941.
Malhotra, R., & Bhatia, H. L. (1984). Variants of the time minimization assignment problem. Trab. Estad. Invest. Oper., 35(3), 331-338.
Sundara Murthy, M. (1976). A bulk transportation problem. Opsearch, 13(3-4), 143-155.
Thenepalle, J. K., & Singamsetty, P. (2018). Bi-criteria travelling salesman subtour problem with time threshold. The European Physical Journal Plus, 133(3), 1-15.
Thenepalle, J. K., & Singamsetty, P. (2019). Lexi-search algorithm for one to many multidimensional bi-criteria unbalanced assignment problem. International Journal of Bio-Inspired Computation, 14(3), 151-170.
Volgenant, A. (2004). Solving the k-cardinality assignment problem by transformation. European Journal of Operational Research, 157(2), 322-331.
Yadaiah, V., & Haragopal, V. V. (2016). A new approach of solving single objective unbalanced assignment problem. American Journal of Operations Research, 6(1), 81-89.