How to cite this paper
Çolak, M & Keskin, G. (2022). An extensive and systematic literature review for hybrid flowshop scheduling problems.International Journal of Industrial Engineering Computations , 13(2), 185-222.
Refrences
Abdollahpour S., & Rezaian J. (2017). Two new meta-heuristics for no-wait flexible flow shop scheduling problem with capacitated machines, mixed make-to-order and make-to-stock policy. Soft Computing, 21, 3147-3165.
Asadi-Gangraj E. (2018). Lagrangian relaxation approach to minimizing makespan in hybrid flow shop scheduling problem with unrelated parallel machines., Scientia Iranica, 25(6), 3765-3775.
Assadipour G., Ke G. Y., & Verma M. (2014). An analytical framework for integrated maritime terminal scheduling problems with time windows. Expert Systems with Applications, 41, 7415-7424.
Attar S. F., Mohammadi M., & Tavakkoli-Moghaddam R. (2013). Hybrid flexible flowshop scheduling problem with unrelated parallel machines and limited waiting times. International Journal of Advanced Manufacturing Technology, 68, 1583-1599.
Attar S. F., Mohammadi M., Tavakkoli-Moghaddam R., & Yaghoubi S. (2014). Solving a new multi-objective hybrid flexible flowshop problem with limited waiting times and machine-sequence-dependent set-up time constraints. International Journal of Computer Integrated Manufacturing, 27(5), 450-469.
Azami A., Demirli K., & Bhuiyan N. (2018). Scheduling in aerospace composite manufacturing systems: a two-stage hybrid flow shop problem. International Journal of Advanced Manufacturing Technology, 95, 3259-3274.
Baxendale M., McGree J. M., Bellette A., & Corry P. (2020). Machine-based production scheduling for rotomoulded plastics manufacturing. International Journal of Production Research, 10.1080/00207543.2020.1727046.
Behnamian J., & Fatemi Ghomi S. M. T. (2011). Hybrid flowshop scheduling with machine and resource-dependent processing times. Applied Mathematical Modelling, 35, 1107-1123.
Behnamian J., & Fatemi Ghomi S. M. T. (2014). Multi-objective fuzzy multiprocessor flowshop scheduling. Applied Soft Computing, 21, 139-148.
Behnamian J., & Zandieh M. (2011). A discrete colonial competitive algorithm for hybrid flowshop scheduling to minimize earliness and quadratic tardiness penalties. Expert Systems with Applications, 38, 14490-14498.
Behnamian J., & Zandieh M. (2013). Earliness and Tardiness Minimizing on a Realistic Hybrid Flowshop Scheduling with Learning Effect by Advanced Metaheuristic. Arabian Journal for Science and Engineering, 38, 1229-1242.
Behnamian J., Fatemi Ghomi S. M. T., & Zandieh M. (2012). Hybrid flowshop scheduling with sequence-dependent setup times by hybridizing max–min ant system, simulated annealing and variable neighbourhood search. Expert Systems, 29(2), 156-169.
Behnamian J., Fatemi Ghomi S. M. T., & Zandieh M. (2014). Realistic variant of just-in-time flowshop scheduling: integration of Lp-metric method in PSO-like algorithm. International Journal of Advanced Manufacturing Technology, 75, 1787-1797.
Behnamian J., Fatemi Ghomi S. M. T., & Zandieh M. (2010). Development of a hybrid metaheuristic to minimise earliness and tardiness in a hybrid flowshop with sequence-dependent setup times. International Journal of Production Research, 48(5), 1415-1438.
Bing-hai Z., Meng Y., & Zhi-qiang L. (2016). An improved Lagrangian relaxation heuristic for the scheduling problem of operating theatres. Computers & Industrial Engineering, 101, 490-503.
Boroun M., Ramezani S., Farahani N. V., Hassannayebi E., Abdolmaali S., & Shakibayifar M. (2020). An efficient heuristic method for joint optimization of train scheduling and stop planning on double-track railway systems. INFOR: Information Systems and Operational Research, 58(4), 652-679.
Boudhar M., & Meziani N. (2010). Two-stage hybrid flow shop with recirculation. International Transactions in Operational Research, 17, 239-255.
Bozorgirad M. A., & Logendran R. (2016). A comparison of local search algorithms with population-based algorithms in hybrid flow shop scheduling problems with realistic characteristics. International Journal of Advanced Manufacturing Technology, 83, 1135-1151.
Bozorgnezhad F., Asadi-Gangraj E., & Paydar M. M. (2019). A Simultaneous Worker Assignment and Scheduling Problem for Minimizing Makespan in Flexible Flow Shop Via Metaheuristic Approaches. International Journal of Industrial Engineering & Production Research, 30, 207-223.
Cao C., Zhang Y., Gu X., Li D., & Li J. (2020a). An improved gravitational search algorithm to the hybrid flowshop with unrelated parallel machines scheduling problem. International Journal of Production Research, 10.1080/00207543.2020.1788732.
Cao J., Pan R., Xia X., Shao X., & Wang X. (2020b). An efficient scheduling approach for an iron-steel plant equipped with self-generation equipment under time-of-use electricity tariffs. Swarm and Evolutionary Computation, 60, 100764.
Chabouh S., Hammami S., Marcon E., & Bouchriha H. (2018). Appointment scheduling of inpatients and outpatients in a multistage integrated surgical suite: Application to a Tunisian ophthalmology surgery department. Journal of Simulation, 12(1), 67-75.
Chamnanlor C., Sethanan K., Gen M., & Chien CF. (2017). Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints. Journal of Intelligent Manufacturing, 28, 1915-1931.
Chen TL., Cheng CY., & Chou YH. (2020). Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming. Annals of Operations Research, 290, 813-836.
Chen YY., Cheng CY., Wang LC., & Chen TL. (2013). A hybrid approach based on the variable neighborhood search and particle swarm optimization for parallel machine scheduling problems - A case study for solar cell industry., International Journal of Production Economics, 141, 66-78.
Cheng CY., Chen TL., Wang LC., & Chen YY. (2013). A genetic algorithm for the multi-stage and parallel-machine scheduling problem with job splitting - A case study for the solar cell industry. International Journal of Production Research, 51(16), 4755-4777.
Cho HM., Bae SJ., Kim J., & Jeong IJ. (2011). Bi-objective scheduling for reentrant hybrid flow shop using Pareto genetic algorithm. Computers & Industrial Engineering, 61, 529-541.
Choi S. H., & Wang K. (2012). Flexible flow shop scheduling with stochastic processing times: A decomposition-based approach. Computers & Industrial Engineering, 63, 362-373.
Chung TP., & Chen F. (2019). A complete immunoglobulin-based artificial immune system algorithm for two-stage assembly flowshop scheduling problem with part splitting and distinct due windows. International Journal of Production Research, 57(10), 3219-3237.
Cortes B. M., Garcia J. C. E., & Hernandez F. R. (2012). Multi-objective flow-shop scheduling with parallel machines. International Journal of Production Research, 50(10), 2796-2808.
Costa A., Cappadonna F. & A., Fichera S. (2014). A novel genetic algorithm for the hybrid flow shop scheduling with parallel batching and eligibility constraints. International Journal of Advanced Manufacturing Technology, 75, 833-847.
Costa A., Cappadonna F. A., & Fichera S. (2013). A dual encoding-based meta-heuristic algorithm for solving a constrained hybrid flow shop scheduling problem. Computers & Industrial Engineering, 64, 937-958.
Costa A., Fernandez-Viagas V., & Framinan J. M. (2020). Solving the hybrid flow shop scheduling problem with limited human resource constraint. Computers & Industrial Engineering, 146, 106545.
Cui H., & Luo X. (2017). An improved Lagrangian relaxation approach to scheduling steelmaking-continuous casting process. Computers and Chemical Engineering, 106, 133–146.
Cui H., Luo X., & Wang Y. (2020). Scheduling of steelmaking-continuous casting process using deflected surrogate Lagrangian relaxation approach and DC algorithm. Computers & Industrial Engineering, 140, 106271.
Dai M., Tang D., Giret A., Salido M. A., & Li W. D. (2013a). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29, 418-429.
Dai M., Tang D., Zheng K., & Cai Q. (2013b). An Improved Genetic-Simulated Annealing Algorithm Based on a Hormone Modulation Mechanism for a Flexible Flow-Shop Scheduling Problem. Advances in Mechanical Engineering, 2013, 13 pages.
Dasgupta P., & Das S. (2015). A Discrete Inter-Species Cuckoo Search for flowshop scheduling problems. Computers & Operations Research, 60, 111-120.
Defersha F. M. (2011). A comprehensive mathematical model for hybrid flexible flowshop lot streaming problem. International Journal of Industrial Engineering Computations, 2, 283-294.
Defersha F. M. (2015). A simulated annealing with multiple-search paths and parallel computation for a comprehensive flowshop scheduling problem. International Transactions in Operational Research, 22(4), 669-691.
Defersha F. M., & Chen M. (2012). Mathematical model and parallel genetic algorithm for hybrid flexible flowshop lot streaming problem. International Journal of Advanced Manufacturing Technology, 62, 249-265.
Ding J., Schulz S., Shen L., Buscher U., & Lü Z. (2020). Energy aware scheduling in flexible flow shops with hybrid particle swarm optimization. Computers and Operations Research, 10.1016/j.cor.2020.105088.
Elmi A., & Topaloglu S. (2013). A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots. Computers & Operations Research, 40, 2543-2555.
Elmi A., & Topaloglu S. (2014). Scheduling multiple parts in hybrid flow shop robotic cells served by a single robot. International Journal of Computer Integrated Manufacturing, 27(12), 1144-1159.
Engin O., & Engin B. (2018). Hybrid flow shop with multiprocessor task scheduling based on earliness and tardiness penalties. Journal of Enterprise Information Management, 31(6), 925-936.
Farahmand-Mehr M., Fattahi P., Kazemi M., Zarei H., & Piri A. (2014). An efficient genetic algorithm for a hybrid flow shop scheduling problem with time lags and sequence-dependent setup time. Manufacturing Review, 1, 21.
Fattahi P., Hosseini S. M. H., & Jolai F. (2013). A mathematical model and extension algorithm for assembly flexible flow shop scheduling problem. International Journal of Advanced Manufacturing Technology, 65, 787-802.
Feng H., Tan C., Xia T., Pan E., & Xi L. (2019). Joint optimization of preventive maintenance and flexible flowshop sequence-dependent group scheduling considering multiple setups. Engineering Optimization, 51(9), 1529-1546.
Feng X., Zheng F., & Xu Y. (2016). Robust scheduling of a two-stage hybrid flow shop with uncertain interval processing times. International Journal of Production Research, 54(12), 3706-3717.
Fu Y., Li Z., Chen N., & Qu C. (2020). A Discrete Multi-Objective Rider Optimization Algorithm for Hybrid Flowshop Scheduling Problem Considering Makespan, Noise and Dust Pollution. IEEE Access, 8, 88527-88546.
Garavito-Hernández E. A., Peña-Tibaduiza E., Perez-Figueredo L. E., & Moratto-Chimenty E. (2019). A meta-heuristic based on the Imperialist Competitive Algorithm (ICA) for solving Hybrid Flow Shop (HFS) scheduling problem with unrelated parallel machines. Journal of Industrial and Production Engineering, 36(6), 362-370.
Geng K., Ye C., & Liu A. L. (2020b). Research on Multi-Objective Hybrid Flow Shop Scheduling Problem With Dual Resource Constraints Using Improved Memetic Algorithm. IEEE Access, 8, 104527-104542.
Geng K., Ye C., Cao L., & Liu L. (2019). Multi-Objective Reentrant Hybrid Flowshop Scheduling with Machines Turning on and off Control Strategy Using Improved Multi-Verse Optimizer Algorithm. Mathematical Problems in Engineering, 2019, 18 pages.
Geng K., Ye C., Dai Z., & Liu L. (2020a). Bi-Objective Re-Entrant Hybrid Flow Shop Scheduling considering Energy Consumption Cost under Time-of-Use Electricity Tariffs. Complexity, 2020, 17 pages.
Ghaleb M. A., & Alharkan I. M. (2019). Particle Swarm Optimization Algorithms for Two-stage Hybrid Flowshop Scheduling Problem with No-wait. Universal Journal of Electrical and Electronic Engineering, 6(2), 46-60.
Ghodratnama A., Jolai F., & Tavakkoli-Moghaddam R. (2015). Solving a new multi-objective multi-route flexible flow line problem by multi-objective particle swarm optimization and NSGA-II. Journal of Manufacturing Systems, 36, 189-202.
Gicquel C., Hege L., Minoux M., & van Canneyt W. (2012). A discrete time exact solution approach for a complex hybrid flow-shop scheduling problem with limited-wait constraints. Computers & Operations Research, 39, 629-636.
Golneshini F. P., & Fazlollahtabar H. (2019). Meta-heuristic algorithms for a clustering-based fuzzy bi-criteria hybrid flow shop scheduling problem. Soft Computing, 23, 12103-12122.
Gong G., Chiong R., Deng Q., Han W., Zhang L., Lin W., & Li K. (2020). Energy-efficient flexible flow shop scheduling with worker flexibility. Expert Systems With Applications, 141, 112902.
González-Neira E. M., García-Cáceres R. G., Caballero-Villalobos J. P., Molina-Sánchez L. P., & Montoya-Torres J. R. (2016). Stochastic flexible flow shop scheduling problem under quantitative and qualitative decision criteria. Computers & Industrial Engineering, 101, 128-144.
Gonzalez-Neira, Montoya-Torres J. R., & Barrera D. (2017). Flow-shop scheduling problem under uncertainties: Review and trends. International Journal of Industrial Engineering Computations, 8, 399-426.
Graham R. L., Lawler E. L., Lenstra J. K., & Rinnooy Kan A. H. G. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. Annals of Discrete Mathematics, 5, 287-326.
Guan S., Shikanai T., Nakamura M., & Fukami K. (2017). Mathematical model and solution for land-use crop planning with cooperative work. 6th IIAI International Congress on Advanced Applied Informatics, Hamamatsu, Japan, 903-908.
Guo Q., Tang L., Liu J., & Zhao S. (2020). Continuous-time formulation and differential evolution algorithm for an integrated batching and scheduling problem in aluminium industry. International Journal of Production, 10.1080/00207543.2020.1747656.
Hachicha H. K., & Mansour F. Z. (2018). Two-MILP models for scheduling elective surgeries within a private healthcare facility. Health Care Management Science, 21, 376-392.
Han Z., Han C., Lin S., Dong X., & Shi H. (2019b). Flexible Flow Shop Scheduling Method with Public Buffer. Processes, 7, 681.
Han Z., Zhang Q., Shi H., & Zhang J. (2019a). An Improved Compact Genetic Algorithm for Scheduling Problems in a Flexible Flow Shop with a Multi-Queue Buffer. Processes, 7, 302.
Hao JH., Li JQ., Du Y., Song MX., Duan P., & Zhang YY. (2019). Solving Distributed Hybrid Flowshop Scheduling Problems by a Hybrid Brain Storm Optimization Algorithm. IEEE Access, 7, 66879-66894.
Hasani A., & Hosseini S. M. H. (2020). A bi-objective flexible flow shop scheduling problem with machine-dependent processing stages: Trade-offbetween production costs and energy consumption. Applied Mathematics and Computation, 386, 125533.
He X., Dong S., & Zhao N. (2020). Research on rush order insertion rescheduling problem under hybrid flow shop based on NSGA-III. International Journal of Production Research, 58(4), 1161-1177.
Hekmatfar M., Fatemi Ghomi S. M. T., & Karimi B. (2011). Two stage reentrant hybrid flow shop with setup times and the criterion of minimizing makespan. Applied Soft Computing, 11, 4530-4539.
Huang J. D., Liu J. J., Chen Q. X., & Mao N. (2017). Minimizing makespan in a two-stage flow shop with parallel batch-processing machines and reentrant jobs. Engineering Optimization, 49(6), 1010-1023.
Huang R. H., Yang CL., & Liu SC. (2015a). No-Wait Flexible Flow Shop Scheduling with Due Windows. Mathematical Problems in Engineering, 2015, 9 pages.
Huang RH., & Yu SC. (2013). Clarifying Cutting and Sewing Processes with Due Windows Using an Effective Ant Colony Optimization. Mathematical Problems in Engineering, 2013, 12 pages.
Huang RH., & Yu SC. (2016). Two-stage multiprocessor flow shop scheduling with deteriorating maintenance in cleaner production. Journal of Cleaner Production, 135, 276-283.
Huang RH., Yang CL., & Hsu CT. (2015b). Multi-objective two-stage multiprocessor flow shop scheduling - a subgroup particle swarm optimisation approach. International Journal of Systems Science, 46(16), 3010-3018.
Huang RH., Yu SC., & Kuo CW. (2014). Reentrant two-stage multiprocessor flow shop scheduling with due windows. International Journal of Advanced Manufacturing Technology, 71, 1263-1276.
Hwang F. J., & Lin B. M. T. (2018). Survey and extensions of manufacturing models in two-stage flexible flow shops with dedicated machines. Computers & Operations Research, 98, 103-112.
Javadian N., Fattahi P., Farahmand-Mehr M., Amiri-Aref M., & Kazemi M. (2012). An immune algorithm for hybrid flow shop scheduling problem with time lags and sequence-dependent setup times. International Journal of Advanced Manufacturing Technology, 63, 337-348.
Jiang S., Liu M., Hao J., & Qian W. (2015). A bi-layer optimization approach for a hybrid flow shop scheduling problem involving controllable processing times in the steelmaking industry. Computers & Industrial Engineering, 87, 518-531.
Johnson S. M. (1954). Optimal two‐ and three‐stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68.
Jolai F., Asefi H., Rabiee M., & Ramezani P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, 20(3), 861-872.
Jubiz-Diaz M., Santander-Mercado A., & Candelo-Becerra J. E. (2019). A multi-item multi-packaging model to minimise cost of lost units, unpacking cost and CO2 emissions. International Journal of Production Research, 57(20), 6246-6263.
Karimi N., Zandieh M., & Karamooz, H. R. (2010). Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach. Expert Systems with Applications, 37, 4024-4032.
Kaya I., Colak M., & Terzi F. (2019). A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strategy Reviews, 24, 207-228.
Keshavarz T., & Salmasi N. (2013). Makespan minimisation in flexible flowshop sequence-dependent group scheduling problem. International Journal of Production Research, 51(20), 6182-6193.
Kheirandish O., Tavakkoli-Moghaddam R. &, Karimi-Nasab M. (2015). An artificial bee colony algorithm for a two stage hybrid flowshop scheduling problem with multilevel product structures and requirement operations. International Journal of Computer Integrated Manufacturing, 28(5), 437-450.
Komaki G. M., Teymourian E., & Kayvanfar V. (2016). Minimising makespan in the two-stage assembly hybrid flow shop scheduling problem using artificial immune systems. International Journal of Production Research, 54(4), 963-983.
Kong L., Wang L., Li F., Wang G., Fu Y., & Liu J. (2020). A New Sustainable Scheduling Method for Hybrid Flow-Shop Subject to the Characteristics of Parallel Machines. IEEE Access, 8, 79998-80009.
Kurdi M. (2019). Ant colony system with a novel Non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop. Swarm and Evolutionary Computation, 44, 987–1002.
Lee GC., Hong J. M., & Choi S. H. (2015). Efficient Heuristic Algorithm for Scheduling Two-Stage Hybrid Flowshop with Sequence-Dependent Setup Times. Mathematical Problems in Engineering, 2015, 10 pages.
Lei C., Zhao N., Ye S., & Wu X. (2020). Memetic algorithm for solving flexible flow-shop scheduling problems with dynamic transport waiting times. Computers & Industrial Engineering, 139, 105984.
Li C., Lu Z., Han X., Zhang Y., & Wang L. (2016). Integrated scheduling of a container handling system with simultaneous loading and discharging operations. Engineering Optimization, 48(3), 397-414.
Li D., Meng X., Liang Q., & Zhao J. (2015). A heuristic-search genetic algorithm for multi-stage hybrid flow shop scheduling with single processing machines and batch processing machines. Journal of Intelligent Manufacturing, 26, 873-890.
Li J., & Han Y. (2020). A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system. Cluster Computing, 23, 2483-2499.
Li J., Pan Q., & Mao K. (2014a)., Suganthan P. N., Solving the steelmaking casting problem using an effective fruit fly optimisation algorithm. Knowledge-Based Systems, 72, 28-36.
Li J., Pan Q., & Mao K. (2014b). Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities. The Scientific World Journal, 2014, 11 pages.
Li J., Tao X., Jia B., Han Y., Liu C., Duan P., Zheng Z., & Sang H. (2020b). Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots. Swarm and Evolutionary Computation, 52, 100600.
Li L., Huo J., & Tang O. (2011). A hybrid flowshop scheduling problem for a cold treating process in seamless steel tube production. International Journal of Production Research, 49(15), 4679-4700.
Li Y., Li X., Gao L., & Meng L. (2020c). An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times. Computers & Industrial Engineering, 147, 106638.
Li Y., Li X., Gao L., Zhang B., Pan QK., Tasgetiren M. F., & Meng L. (2020a). A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times. International Journal of Production Research, 10.1080/00207543.2020.1753897.
Li Y., Wang H., Li Y., & Li L. (2019a). Patient assignment scheduling in a cloud healthcare system based on petri net and greedy based heuristic. Enterprise Information Systems, 13(4), 515-533.
Li Z., Chen Q., & Mao N. (2013a). A heuristic algorithm for two-stage flexible flow shop scheduling with head group constraint. International Journal of Production Research, 51(3), 751-771.
Li Z., Chen Q., Mao N., Wang X., & Liu J. (2013b). Scheduling rules for two-stage flexible flow shop scheduling problem subject to tail group constraint. International Journal of Production Economics, 146, 667-678.
Li Z., Zhong R. Y., Barenji A. V., Liu J. J., Yu C. X., & Huang G. Q. (2019b). Bi‑objective hybrid flow shop scheduling with common due date. Operational Research, 10.1007/s12351-019-00470-8.
Liao CJ., Tjandradjaja E., & Chung TP. (2012). An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Applied Soft Computing, 12, 1755-1764.
Lin D., Lee C. K. M., & Wu Z. (2012). Integrating analytical hierarchy process to genetic algorithm for re-entrant flow shop scheduling problem. International Journal of Production Research, 50(7), 1813-1824.
Lin SW., Ying KC., & Huang CY. (2013). Multiprocessor task scheduling in multistage hybrid flowshops: A hybrid artificial bee colony algorithm with bi-directional planning. Computers & Operations Research, 40, 1186-1195.
Liu J., Han W., Li J., Zhang Y., & Su X. (2020a). Integration Design of Sortie Scheduling for Carrier Aircrafts Based on Hybrid Flexible Flowshop. IEEE Systems Journal, 14(1), 1503-1511.
Liu M., Yang X., Chu F., Zhang J., & Chu C. (2020c). Energy-oriented bi-objective optimization for the tempered glass scheduling. Omega, 90, 101995.
Liu M., Yang X., Zhang J., & Chu C. (2017). Scheduling a tempered glass manufacturing system: a three-stage hybrid flow shop model. International Journal of Production Research, 55(20), 6084-6107.
Liu Z., Yan J., Cheng Q., Yang C., Sun S., & Xue D. (2020b). The mixed production mode considering continuous and intermittent processing for an energy-efficient hybrid flow shop scheduling. Journal of Cleaner Production, 246, 119071.
Long J., Zheng Z., Gao X., & Pardalos PM. (2018). Scheduling a realistic hybrid flow shop with stage skipping andadjustable processing time in steel plants. Applied Soft Computing, 64, 536-549.
Lu C., Gao L., Pan Q., Li X., & Zheng J. (2019). A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution. Applied Soft Computing, 75, 728-749.
Luo H., Huang G. Q., Zhang Y. F., & Dai Q. Y. (2011). Hybrid flowshop scheduling with batch-discrete processors and machine maintenance in time windows. International Journal of Production Research, 49(6), 1575-1603.
Luo J., Fujimura S., El Baz D., & Plazoles B. (2019). GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem. Journal of Parallel and Distributed Computing, 133, 244-257.
Mao K., Pan Q., Pang X., & Chai T. (2014). A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process. European Journal of Operational Research, 236, 51-60.
Marichelvam M. K., Geetha M., & Tosun O. (2020). An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling problems with the effect of human factors - A case study. Computers and Operations Research, 114, 104812.
Marichelvam M. K., Prabaharan T., & Yang X. S. (2014a). A Discrete Firefly Algorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems. IEEE Transactions on Evolutionary Computation, 18(2), 301-305.
Marichelvam M. K., Prabaharan T., & Yang X. S. (2014b). Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing, 19, 93-101.
Meghdari A., Fazlollahtabar S., & Darband H. (2015). Flexible Flow Shop Scheduling with Learning and Forgetting Effects. Journal of Mechanical Engineering Research and Developments, 38(2), 116-125.
Meng L., Zhang C., Shao X., Ren Y., & Ren C. (2019). Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines. International Journal of Production Research, 57(4), 1119-1145.
Moher D., Liberati A., Tetzlaff J., & Altman D. G. (2009a). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, 151(4), 264-270.
Moher D., Liberati A., Tetzlaff J., & Altman D. G. (2009b). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement, Plos Medicine, 6(7), 1-6.
Mollaei A., Mohammadi M., & Naderi B. (2019). A bi-objective MILP model for blocking hybrid flexible flow shop scheduling problem: robust possibilistic programming approach. International Journal of Management Science and Engineering Management, 14(2), 137-146.
Morais M. F., Filho M. G., & Boiko T. J. P. (2013). Hybrid Flow Shop Scheduling Problems Involving Setup Considerations: A Literature Review and Analysis. International Journal of Industrial Engineering, 20(11-12), 614-630.
Naderi B., & Yazdani M. (2014). A model and imperialist competitive algorithm for hybrid flow shops with sublots and setup times. Journal of Manufacturing Systems, 33, 647-653.
Naderi B., Gohari S., & Yazdani M. (2014). Hybrid flexible flowshop problems: Models and solution methods. Applied Mathematical Modelling, 38, 5767-5780.
Nejati M., Mahdavi I., Hassanzadeh R., & Mahdavi-Amiri N. (2016). Lot streaming in a two-stage assembly hybrid flow shop scheduling problem with a work shift constraint. Journal of Industrial and Production Engineering, 33(7), 459-471.
Nejati M., Mahdavi I., Hassanzadeh R., Mahdavi-Amiri N., & Mojarad M. S. (2014). Multi-job lot streaming to minimize the weighted completion time in a hybrid flow shop scheduling problem with work shift constraint. International Journal of Advanced Manufacturing Technology, 70, 501-514.
Neufeld J. S., Gupta J. N. D., & Buscher U. (2016). A comprehensive review of flowshop group scheduling literature. Computers & Operations Research, 70, 56-74.
Nikzad F., Rezaeian J., Mahdavi I., & Rastgar I. (2015). Scheduling of multi-component products in a two-stage flexible flow shop. Applied Soft Computing, 32, 132-143.
Nishi T., Hiranaka Y., & Inuiguchi M. (2010). Lagrangian relaxation with cut generation for hybrid flowshop scheduling problems to minimize the total weighted tardiness. Computers & Operations Research, 37, 189-198.
Niu Q., Zhou T., Fei M., & Wang B. (2012). An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems. Mathematics and Computers in Simulation, 84, 1-25.
Oztop H., Tasgetiren M. F., Kandiller L., Türsel Eliiyi D., & Gao L. (2020). Ensemble of metaheuristics for energy-efficient hybrid flowshops: Makespan versus total energy consumption. Swarm and Evolutionary Computation, 54, 100660.
Oztop H., Tasgetiren M. F., Türsel Eliiyi D., & Pan QK. (2019). Metaheuristic algorithms for the hybrid flowshop scheduling problem. Computers and Operations Research, 111, 177-196.
Pan QK. (2016). An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling. European Journal of Operational Research, 250, 702-714.
Pan QK., & Dong Y. (2014). An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation. Information Sciences, 277, 643-655.
Pan QK., Wang L., Li JQ., & Duan JH. (2014). A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation. OMEGA, 45, 42-56.
Pargar F., & Zandieh M. (2012). Bi-criteria SDST hybrid flow shop scheduling with learning effect of setup times: water flow-like algorithm approach. International Journal of Production Research, 50(10), 2609-2623.
Peng K., Pan Q., & Zhang B. (2018b). An improved artificial bee colony algorithm for steelmaking-refining-continuous casting scheduling problem. Chinese Journal of Chemical Engineering, 26, 1727–1735.
Peng K., Pan QK., Gao L., Zhang B., & Pang X. (2018a). An Improved Artificial Bee Colony algorithm for real-world hybrid flowshop rescheduling in Steelmaking-Refining-Continuous Casting process. Computers & Industrial Engineering, 122, 235-250.
Pinedo M. L. (2008). Scheduling theory, algorithms, and systems. 3rd ed., Springer, New York.
Qin T., Du Y., Chen J. H., & Sha M. (2020). Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel. European Journal of Operational Research, 285(3), 884-901.
Qin W., Zhuang Z., Liu Y., & Tang O. (2019). A two-stage ant colony algorithm for hybrid flow shop scheduling with lot sizing and calendar constraints in printed circuit board assembly. Computers & Industrial Engineering, 138, 106-115.
Rahmani D., & Ramezanian R. (2016). A stable reactive approach in dynamic flexible flow shop scheduling with unexpected disruptions: A case study. Computers & Industrial Engineering, 98, 360-372.
Rahmani D., Heydari M., Makui A., & Zandieh M. (2013). A new approach to reducing the effects of stochastic disruptions in flexible flow shop problems with stability and nervousness. International Journal of Management Science and Engineering Management, 8(3), 173-178.
Raissi S., Rooeinfar R., & Ghezavati V. R. (2019). Three Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint. Journal of Optimization in Industrial Engineering, 12(2), 131-147.
Ramezanian R., Sanami S. F., & Nikabadi M .S. (2017). A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry. International Journal of Advanced Manufacturing Technology, 88, 2389-2403.
Ribas I., Leisten R., & Framinan J. M. (2010). Review and classification of hybrid flowshop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37, 1439-1454.
Rooeinfar R., Raissi S., & Ghezavati VR. (2019). Stochastic flexible flow shop scheduling problem with limited buffers and fixed interval preventive maintenance: a hybrid approach of simulation and metaheuristic algorithms. Simulation, 95(6), 509–528.
Rossi A., Puppato A., & Lanzetta M. (2013). Heuristics for scheduling a two-stage hybrid flow shop with parallel batching machines: application at a hospital sterilisation plant. International Journal of Production Research, 51(8), 2363-2376.
Ruiz R., & Vazquez-Rodriguez J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205, 1-18.
Sawik T. (2012). Batch versus cyclic scheduling of flexible flow shops by mixed-integer programming. International Journal of Production Research, 50(18), 5017-5034.
Schulz S., Buscher U., & Shen L. (2020). Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices. Journal of Business Economics, 90, 1315-1343.
Schulz S., Neufeld J. S., & Buscher U. (2019). A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of Cleaner Production, 224, 421-434.
Seidgar H., Zandieh M., & Mahdavi I. (2016). Bi-objective optimization for integrating production and preventive maintenance scheduling in two-stage assembly flow shop problem. Journal of Industrial and Production Engineering, 33(6), 404-425.
Shahvari O., Salmasi N., Logendran R., & Abbasi B. (2012). An efficient tabu search algorithm for flexible flow shop sequence-dependent group scheduling problems. International Journal of Production Research, 50(15), 4237-4254.
Shao W., Shao Z., & Pi D. (2020). Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem. Knowledge-Based Systems, 194, 105527.
Sheikh S. (2013). Multi-objective flexible flow lines with due window, time lag, and job rejection. International Journal of Advanced Manufacturing Technology, 64, 1423-1433.
Shen J., Wang L., & Zheng H. (2016). A modified teaching-learning-based optimisation algorithm for bi-objective re-entrant hybrid flowshop scheduling. International Journal of Production Research, 54(12), 3622-3639.
Shiau DF., & Huang YM. (2012). A hybrid two-phase encoding particle swarm optimization for total weighted completion time minimization in proportionate flexible flow shop scheduling. International Journal of Advanced Manufacturing Technology, 58, 339-357.
Shim SO., Park KB., & Choi SY. (2017). Innovative Production Scheduling with Customer Satisfaction Based Measurement for the Sustainability of Manufacturing Firms. Sustainability, 9, 2249.
Solano-Charris E. L., Montoya-Torres J. R., & Paternina-Arboleda C. D. (2011). Ant colony optimization algorithm for a Bi-criteria 2-stage hybrid flowshop scheduling problem. Journal of Intelligent Manufacturing, 22, 815-822.
Soltani S. & A., Karimi B. (2015). Cyclic hybrid flow shop scheduling problem with limited buffers and machine eligibility constraints. International Journal of Advanced Manufacturing Technology, 76, 1739-1755.
Sun Y., & Qi X. (2020). A DE-LS Metaheuristic Algorithm for Hybrid Flow-Shop Scheduling Problem considering Multiple Requirements of Customers. Scientific Programming, 2020, 8811391.
Tadayon B., & Salmasi N. (2013). A two-criteria objective function flexible flowshop scheduling problem with machine eligibility constraint. International Journal of Advanced Manufacturing Technology, 64, 1001-1015.
Tan Y., Mönch L., & Fowler J. W. (2018). A hybrid scheduling approach for a two-stage flexible flow shop with batch processing machines. Journal of Scheduling, 21, 209-226.
Tang D., Dai M., Salido M. A., & Giret A. (2016). Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Computers in Industry, 81, 82–95.
Tang J., & Song J. (2010). Discrete particle swarm optimisation combined with no-wait algorithm in stages for scheduling mill roller annealing process. International Journal of Computer Integrated Manufacturing, 23(11), 979-991.
Wang B., Huang K., & Li T. (2018). Two-stage hybrid flowshop scheduling with simultaneous processing machines. Journal of Scheduling, 21, 387-411.
Wang K., & Choi S. H. (2012). A decomposition-based approach to flexible flow shop scheduling under machine breakdown. International Journal of Production Research, 50(1), 215-234.
Wang K., & Choi S. H. (2014). A holonic approach to flexible flow shop scheduling under stochastic processing times. Computers & Operations Research, 43, 157-168.
Wang K., Choi S. H., & Qin H. (2014b). An estimation of distribution algorithm for hybrid flow shop scheduling under stochastic processing times. International Journal of Production Research, 52(24), 7360-7376.
Wang LC., Chen YY., Chen TL., Cheng CY., & Chang CW. (2014a). A hybrid flowshop scheduling model considering dedicated machines and lot-splitting for the solar cell industry. International Journal of Systems Science, 45(10), 2055-2071.
Wang S., Liu M., & Chu C. (2015). A branch-and-bound algorithm for two-stage nowait hybrid flow-shop scheduling. International Journal of Production Research, 53(4), 1143-1167.
Wang S., Wang L., Liu M., & Xu Y. (2013). An enhanced estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with identical parallel machines. International Journal of Advanced Manufacturing Technology, 68, 2043-2056.
Wang S., Wang X., Chu F., & Yu J. (2020). An energy-efficient two-stage hybrid flow shop scheduling problem in a glass production. International Journal of Production Research, 58(8), 2283-2314.
Worasan K., Sethanan K., Pitakaso R., Moonsri K., & Nitisiri K. (2020). Hybrid particle swarm optimization and neighborhood strategy search for scheduling machines and equipment and routing of tractors in sugarcane field preparation. Computers and Electronics in Agriculture, 178, 105733.
Wu X., Shen X., & Cui Q. (2018). Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy. Sustainability, 10, 841.
Xiong F., Xing K., & Wang F. (2015). Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time. European Journal of Operational Research, 240, 338-354.
Xu Y., Wang L., Wang S., & Liu M. (2013). An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines. Engineering Optimization, 45(12), 1409-1430.
Xuan H., Zhang H., & Li B. (2019). An Improved Discrete Artificial Bee Colony Algorithm for Flexible Flowshop Scheduling with Step Deteriorating Jobs and Sequence-Dependent Setup Times. Mathematical Problems in Engineering, 2019, 13 pages.
Yalaoui N., Ouazene Y. ,Yalaoui F., Amodeo L., & Mahdi H. (2013). Fuzzy-metaheuristic methods to solve a hybrid flow shop scheduling problem with preassignment. International Journal of Production Research, 51(12), 3609-3624.
Yan J., Li L., Zhao F., Zhang F., & Zhao Q. (2016). A multi-level optimization approach for energy-efficient flexible flow shop scheduling. Journal of Cleaner Production, 137, 1543-1552.
Ying KC., & Lin SW. (2018). Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks. Expert Systems With Applications, 92, 132–141.
Yu JM., Huang R., & Lee DH. (2017). Iterative algorithms for batching and scheduling to minimise the total job tardiness in two-stage hybrid flow shops. International Journal of Production Research, 55(11), 3266-3282.
Yu SC. (2014). Elucidating multiprocessors flow shop scheduling with dependent setup times using a twin particle swarm optimization. Applied Soft Computing, 21, 578-589.
Zabihzadeh S. S., & Rezaeian J. (2016). Two meta-heuristic algorithms for flexible flow shop schedulingproblem with robotic transportation and release time. Applied Soft Computing, 40, 319-330.
Zeng Z., Hong M., Man Y., Li J., Zhang Y., & Liu H. (2018). Multi-object optimization of flexible flow shop scheduling with batch process - Consideration total electricity consumption and material wastage. Journal of Cleaner Production, 183, 925-939.
Zhang B., Pan Q., Gao L., Li X., Meng L., & Peng K. (2019). A multiobjective evolutionary algorithm based on decomposition for hybrid flowshop green scheduling problem. Computers & Industrial Engineering, 136, 325-344.
Zhang B., Pan Q., Gao L., Zhang X., & Sang H., Li J. (2017). An effective modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming. Applied Soft Computing, 52, 14-27.
Zhang X. Y., & Chen L. (2018). A re-entrant hybrid flow shop scheduling problem with machine eligibility constraints. International Journal of Production Research, 56(16), 5293-5305.
Zhou B., Hu L., & Zhong Z. (2018). A hybrid differential evolution algorithm with estimation of distribution algorithm for reentrant hybrid flow shop scheduling problem. Neural Computing and Applications, 30, 193-209.
Zhou B., Liao X., & Wang K. (2019). Kalman filter and multi-stage learning-based hybrid differential evolution algorithm with particle swarm for a two-stage flow shops scheduling problem. Soft Computing, 23, 13067-13083.
Ziaeifar A., Tavakkoli-Moghaddam R., & Pichka K. (2012). Solving a new mathematical model for a hybrid flow shop scheduling problem with a processor assignment by a genetic algorithm. International Journal of Advanced Manufacturing Technology, 61, 339-349.
Zohali H., Naderi B., & Mohammadi M. (2019b). The economic lot scheduling problem in limited-buffer flexible flow shops: Mathematical models and a discrete fruit fly algorithm. Applied Soft Computing, 80, 904-919.
Zohali H., Naderi B., Mohammadi M., & Roshanaei V. (2019a). Reformulation, linearization, and a hybrid iterated local search algorithm for economic lot-sizing and sequencing in hybrid flow shop problems. Computers and Operations Research, 104, 127–138.
Asadi-Gangraj E. (2018). Lagrangian relaxation approach to minimizing makespan in hybrid flow shop scheduling problem with unrelated parallel machines., Scientia Iranica, 25(6), 3765-3775.
Assadipour G., Ke G. Y., & Verma M. (2014). An analytical framework for integrated maritime terminal scheduling problems with time windows. Expert Systems with Applications, 41, 7415-7424.
Attar S. F., Mohammadi M., & Tavakkoli-Moghaddam R. (2013). Hybrid flexible flowshop scheduling problem with unrelated parallel machines and limited waiting times. International Journal of Advanced Manufacturing Technology, 68, 1583-1599.
Attar S. F., Mohammadi M., Tavakkoli-Moghaddam R., & Yaghoubi S. (2014). Solving a new multi-objective hybrid flexible flowshop problem with limited waiting times and machine-sequence-dependent set-up time constraints. International Journal of Computer Integrated Manufacturing, 27(5), 450-469.
Azami A., Demirli K., & Bhuiyan N. (2018). Scheduling in aerospace composite manufacturing systems: a two-stage hybrid flow shop problem. International Journal of Advanced Manufacturing Technology, 95, 3259-3274.
Baxendale M., McGree J. M., Bellette A., & Corry P. (2020). Machine-based production scheduling for rotomoulded plastics manufacturing. International Journal of Production Research, 10.1080/00207543.2020.1727046.
Behnamian J., & Fatemi Ghomi S. M. T. (2011). Hybrid flowshop scheduling with machine and resource-dependent processing times. Applied Mathematical Modelling, 35, 1107-1123.
Behnamian J., & Fatemi Ghomi S. M. T. (2014). Multi-objective fuzzy multiprocessor flowshop scheduling. Applied Soft Computing, 21, 139-148.
Behnamian J., & Zandieh M. (2011). A discrete colonial competitive algorithm for hybrid flowshop scheduling to minimize earliness and quadratic tardiness penalties. Expert Systems with Applications, 38, 14490-14498.
Behnamian J., & Zandieh M. (2013). Earliness and Tardiness Minimizing on a Realistic Hybrid Flowshop Scheduling with Learning Effect by Advanced Metaheuristic. Arabian Journal for Science and Engineering, 38, 1229-1242.
Behnamian J., Fatemi Ghomi S. M. T., & Zandieh M. (2012). Hybrid flowshop scheduling with sequence-dependent setup times by hybridizing max–min ant system, simulated annealing and variable neighbourhood search. Expert Systems, 29(2), 156-169.
Behnamian J., Fatemi Ghomi S. M. T., & Zandieh M. (2014). Realistic variant of just-in-time flowshop scheduling: integration of Lp-metric method in PSO-like algorithm. International Journal of Advanced Manufacturing Technology, 75, 1787-1797.
Behnamian J., Fatemi Ghomi S. M. T., & Zandieh M. (2010). Development of a hybrid metaheuristic to minimise earliness and tardiness in a hybrid flowshop with sequence-dependent setup times. International Journal of Production Research, 48(5), 1415-1438.
Bing-hai Z., Meng Y., & Zhi-qiang L. (2016). An improved Lagrangian relaxation heuristic for the scheduling problem of operating theatres. Computers & Industrial Engineering, 101, 490-503.
Boroun M., Ramezani S., Farahani N. V., Hassannayebi E., Abdolmaali S., & Shakibayifar M. (2020). An efficient heuristic method for joint optimization of train scheduling and stop planning on double-track railway systems. INFOR: Information Systems and Operational Research, 58(4), 652-679.
Boudhar M., & Meziani N. (2010). Two-stage hybrid flow shop with recirculation. International Transactions in Operational Research, 17, 239-255.
Bozorgirad M. A., & Logendran R. (2016). A comparison of local search algorithms with population-based algorithms in hybrid flow shop scheduling problems with realistic characteristics. International Journal of Advanced Manufacturing Technology, 83, 1135-1151.
Bozorgnezhad F., Asadi-Gangraj E., & Paydar M. M. (2019). A Simultaneous Worker Assignment and Scheduling Problem for Minimizing Makespan in Flexible Flow Shop Via Metaheuristic Approaches. International Journal of Industrial Engineering & Production Research, 30, 207-223.
Cao C., Zhang Y., Gu X., Li D., & Li J. (2020a). An improved gravitational search algorithm to the hybrid flowshop with unrelated parallel machines scheduling problem. International Journal of Production Research, 10.1080/00207543.2020.1788732.
Cao J., Pan R., Xia X., Shao X., & Wang X. (2020b). An efficient scheduling approach for an iron-steel plant equipped with self-generation equipment under time-of-use electricity tariffs. Swarm and Evolutionary Computation, 60, 100764.
Chabouh S., Hammami S., Marcon E., & Bouchriha H. (2018). Appointment scheduling of inpatients and outpatients in a multistage integrated surgical suite: Application to a Tunisian ophthalmology surgery department. Journal of Simulation, 12(1), 67-75.
Chamnanlor C., Sethanan K., Gen M., & Chien CF. (2017). Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints. Journal of Intelligent Manufacturing, 28, 1915-1931.
Chen TL., Cheng CY., & Chou YH. (2020). Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming. Annals of Operations Research, 290, 813-836.
Chen YY., Cheng CY., Wang LC., & Chen TL. (2013). A hybrid approach based on the variable neighborhood search and particle swarm optimization for parallel machine scheduling problems - A case study for solar cell industry., International Journal of Production Economics, 141, 66-78.
Cheng CY., Chen TL., Wang LC., & Chen YY. (2013). A genetic algorithm for the multi-stage and parallel-machine scheduling problem with job splitting - A case study for the solar cell industry. International Journal of Production Research, 51(16), 4755-4777.
Cho HM., Bae SJ., Kim J., & Jeong IJ. (2011). Bi-objective scheduling for reentrant hybrid flow shop using Pareto genetic algorithm. Computers & Industrial Engineering, 61, 529-541.
Choi S. H., & Wang K. (2012). Flexible flow shop scheduling with stochastic processing times: A decomposition-based approach. Computers & Industrial Engineering, 63, 362-373.
Chung TP., & Chen F. (2019). A complete immunoglobulin-based artificial immune system algorithm for two-stage assembly flowshop scheduling problem with part splitting and distinct due windows. International Journal of Production Research, 57(10), 3219-3237.
Cortes B. M., Garcia J. C. E., & Hernandez F. R. (2012). Multi-objective flow-shop scheduling with parallel machines. International Journal of Production Research, 50(10), 2796-2808.
Costa A., Cappadonna F. & A., Fichera S. (2014). A novel genetic algorithm for the hybrid flow shop scheduling with parallel batching and eligibility constraints. International Journal of Advanced Manufacturing Technology, 75, 833-847.
Costa A., Cappadonna F. A., & Fichera S. (2013). A dual encoding-based meta-heuristic algorithm for solving a constrained hybrid flow shop scheduling problem. Computers & Industrial Engineering, 64, 937-958.
Costa A., Fernandez-Viagas V., & Framinan J. M. (2020). Solving the hybrid flow shop scheduling problem with limited human resource constraint. Computers & Industrial Engineering, 146, 106545.
Cui H., & Luo X. (2017). An improved Lagrangian relaxation approach to scheduling steelmaking-continuous casting process. Computers and Chemical Engineering, 106, 133–146.
Cui H., Luo X., & Wang Y. (2020). Scheduling of steelmaking-continuous casting process using deflected surrogate Lagrangian relaxation approach and DC algorithm. Computers & Industrial Engineering, 140, 106271.
Dai M., Tang D., Giret A., Salido M. A., & Li W. D. (2013a). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29, 418-429.
Dai M., Tang D., Zheng K., & Cai Q. (2013b). An Improved Genetic-Simulated Annealing Algorithm Based on a Hormone Modulation Mechanism for a Flexible Flow-Shop Scheduling Problem. Advances in Mechanical Engineering, 2013, 13 pages.
Dasgupta P., & Das S. (2015). A Discrete Inter-Species Cuckoo Search for flowshop scheduling problems. Computers & Operations Research, 60, 111-120.
Defersha F. M. (2011). A comprehensive mathematical model for hybrid flexible flowshop lot streaming problem. International Journal of Industrial Engineering Computations, 2, 283-294.
Defersha F. M. (2015). A simulated annealing with multiple-search paths and parallel computation for a comprehensive flowshop scheduling problem. International Transactions in Operational Research, 22(4), 669-691.
Defersha F. M., & Chen M. (2012). Mathematical model and parallel genetic algorithm for hybrid flexible flowshop lot streaming problem. International Journal of Advanced Manufacturing Technology, 62, 249-265.
Ding J., Schulz S., Shen L., Buscher U., & Lü Z. (2020). Energy aware scheduling in flexible flow shops with hybrid particle swarm optimization. Computers and Operations Research, 10.1016/j.cor.2020.105088.
Elmi A., & Topaloglu S. (2013). A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots. Computers & Operations Research, 40, 2543-2555.
Elmi A., & Topaloglu S. (2014). Scheduling multiple parts in hybrid flow shop robotic cells served by a single robot. International Journal of Computer Integrated Manufacturing, 27(12), 1144-1159.
Engin O., & Engin B. (2018). Hybrid flow shop with multiprocessor task scheduling based on earliness and tardiness penalties. Journal of Enterprise Information Management, 31(6), 925-936.
Farahmand-Mehr M., Fattahi P., Kazemi M., Zarei H., & Piri A. (2014). An efficient genetic algorithm for a hybrid flow shop scheduling problem with time lags and sequence-dependent setup time. Manufacturing Review, 1, 21.
Fattahi P., Hosseini S. M. H., & Jolai F. (2013). A mathematical model and extension algorithm for assembly flexible flow shop scheduling problem. International Journal of Advanced Manufacturing Technology, 65, 787-802.
Feng H., Tan C., Xia T., Pan E., & Xi L. (2019). Joint optimization of preventive maintenance and flexible flowshop sequence-dependent group scheduling considering multiple setups. Engineering Optimization, 51(9), 1529-1546.
Feng X., Zheng F., & Xu Y. (2016). Robust scheduling of a two-stage hybrid flow shop with uncertain interval processing times. International Journal of Production Research, 54(12), 3706-3717.
Fu Y., Li Z., Chen N., & Qu C. (2020). A Discrete Multi-Objective Rider Optimization Algorithm for Hybrid Flowshop Scheduling Problem Considering Makespan, Noise and Dust Pollution. IEEE Access, 8, 88527-88546.
Garavito-Hernández E. A., Peña-Tibaduiza E., Perez-Figueredo L. E., & Moratto-Chimenty E. (2019). A meta-heuristic based on the Imperialist Competitive Algorithm (ICA) for solving Hybrid Flow Shop (HFS) scheduling problem with unrelated parallel machines. Journal of Industrial and Production Engineering, 36(6), 362-370.
Geng K., Ye C., & Liu A. L. (2020b). Research on Multi-Objective Hybrid Flow Shop Scheduling Problem With Dual Resource Constraints Using Improved Memetic Algorithm. IEEE Access, 8, 104527-104542.
Geng K., Ye C., Cao L., & Liu L. (2019). Multi-Objective Reentrant Hybrid Flowshop Scheduling with Machines Turning on and off Control Strategy Using Improved Multi-Verse Optimizer Algorithm. Mathematical Problems in Engineering, 2019, 18 pages.
Geng K., Ye C., Dai Z., & Liu L. (2020a). Bi-Objective Re-Entrant Hybrid Flow Shop Scheduling considering Energy Consumption Cost under Time-of-Use Electricity Tariffs. Complexity, 2020, 17 pages.
Ghaleb M. A., & Alharkan I. M. (2019). Particle Swarm Optimization Algorithms for Two-stage Hybrid Flowshop Scheduling Problem with No-wait. Universal Journal of Electrical and Electronic Engineering, 6(2), 46-60.
Ghodratnama A., Jolai F., & Tavakkoli-Moghaddam R. (2015). Solving a new multi-objective multi-route flexible flow line problem by multi-objective particle swarm optimization and NSGA-II. Journal of Manufacturing Systems, 36, 189-202.
Gicquel C., Hege L., Minoux M., & van Canneyt W. (2012). A discrete time exact solution approach for a complex hybrid flow-shop scheduling problem with limited-wait constraints. Computers & Operations Research, 39, 629-636.
Golneshini F. P., & Fazlollahtabar H. (2019). Meta-heuristic algorithms for a clustering-based fuzzy bi-criteria hybrid flow shop scheduling problem. Soft Computing, 23, 12103-12122.
Gong G., Chiong R., Deng Q., Han W., Zhang L., Lin W., & Li K. (2020). Energy-efficient flexible flow shop scheduling with worker flexibility. Expert Systems With Applications, 141, 112902.
González-Neira E. M., García-Cáceres R. G., Caballero-Villalobos J. P., Molina-Sánchez L. P., & Montoya-Torres J. R. (2016). Stochastic flexible flow shop scheduling problem under quantitative and qualitative decision criteria. Computers & Industrial Engineering, 101, 128-144.
Gonzalez-Neira, Montoya-Torres J. R., & Barrera D. (2017). Flow-shop scheduling problem under uncertainties: Review and trends. International Journal of Industrial Engineering Computations, 8, 399-426.
Graham R. L., Lawler E. L., Lenstra J. K., & Rinnooy Kan A. H. G. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. Annals of Discrete Mathematics, 5, 287-326.
Guan S., Shikanai T., Nakamura M., & Fukami K. (2017). Mathematical model and solution for land-use crop planning with cooperative work. 6th IIAI International Congress on Advanced Applied Informatics, Hamamatsu, Japan, 903-908.
Guo Q., Tang L., Liu J., & Zhao S. (2020). Continuous-time formulation and differential evolution algorithm for an integrated batching and scheduling problem in aluminium industry. International Journal of Production, 10.1080/00207543.2020.1747656.
Hachicha H. K., & Mansour F. Z. (2018). Two-MILP models for scheduling elective surgeries within a private healthcare facility. Health Care Management Science, 21, 376-392.
Han Z., Han C., Lin S., Dong X., & Shi H. (2019b). Flexible Flow Shop Scheduling Method with Public Buffer. Processes, 7, 681.
Han Z., Zhang Q., Shi H., & Zhang J. (2019a). An Improved Compact Genetic Algorithm for Scheduling Problems in a Flexible Flow Shop with a Multi-Queue Buffer. Processes, 7, 302.
Hao JH., Li JQ., Du Y., Song MX., Duan P., & Zhang YY. (2019). Solving Distributed Hybrid Flowshop Scheduling Problems by a Hybrid Brain Storm Optimization Algorithm. IEEE Access, 7, 66879-66894.
Hasani A., & Hosseini S. M. H. (2020). A bi-objective flexible flow shop scheduling problem with machine-dependent processing stages: Trade-offbetween production costs and energy consumption. Applied Mathematics and Computation, 386, 125533.
He X., Dong S., & Zhao N. (2020). Research on rush order insertion rescheduling problem under hybrid flow shop based on NSGA-III. International Journal of Production Research, 58(4), 1161-1177.
Hekmatfar M., Fatemi Ghomi S. M. T., & Karimi B. (2011). Two stage reentrant hybrid flow shop with setup times and the criterion of minimizing makespan. Applied Soft Computing, 11, 4530-4539.
Huang J. D., Liu J. J., Chen Q. X., & Mao N. (2017). Minimizing makespan in a two-stage flow shop with parallel batch-processing machines and reentrant jobs. Engineering Optimization, 49(6), 1010-1023.
Huang R. H., Yang CL., & Liu SC. (2015a). No-Wait Flexible Flow Shop Scheduling with Due Windows. Mathematical Problems in Engineering, 2015, 9 pages.
Huang RH., & Yu SC. (2013). Clarifying Cutting and Sewing Processes with Due Windows Using an Effective Ant Colony Optimization. Mathematical Problems in Engineering, 2013, 12 pages.
Huang RH., & Yu SC. (2016). Two-stage multiprocessor flow shop scheduling with deteriorating maintenance in cleaner production. Journal of Cleaner Production, 135, 276-283.
Huang RH., Yang CL., & Hsu CT. (2015b). Multi-objective two-stage multiprocessor flow shop scheduling - a subgroup particle swarm optimisation approach. International Journal of Systems Science, 46(16), 3010-3018.
Huang RH., Yu SC., & Kuo CW. (2014). Reentrant two-stage multiprocessor flow shop scheduling with due windows. International Journal of Advanced Manufacturing Technology, 71, 1263-1276.
Hwang F. J., & Lin B. M. T. (2018). Survey and extensions of manufacturing models in two-stage flexible flow shops with dedicated machines. Computers & Operations Research, 98, 103-112.
Javadian N., Fattahi P., Farahmand-Mehr M., Amiri-Aref M., & Kazemi M. (2012). An immune algorithm for hybrid flow shop scheduling problem with time lags and sequence-dependent setup times. International Journal of Advanced Manufacturing Technology, 63, 337-348.
Jiang S., Liu M., Hao J., & Qian W. (2015). A bi-layer optimization approach for a hybrid flow shop scheduling problem involving controllable processing times in the steelmaking industry. Computers & Industrial Engineering, 87, 518-531.
Johnson S. M. (1954). Optimal two‐ and three‐stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68.
Jolai F., Asefi H., Rabiee M., & Ramezani P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, 20(3), 861-872.
Jubiz-Diaz M., Santander-Mercado A., & Candelo-Becerra J. E. (2019). A multi-item multi-packaging model to minimise cost of lost units, unpacking cost and CO2 emissions. International Journal of Production Research, 57(20), 6246-6263.
Karimi N., Zandieh M., & Karamooz, H. R. (2010). Bi-objective group scheduling in hybrid flexible flowshop: A multi-phase approach. Expert Systems with Applications, 37, 4024-4032.
Kaya I., Colak M., & Terzi F. (2019). A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strategy Reviews, 24, 207-228.
Keshavarz T., & Salmasi N. (2013). Makespan minimisation in flexible flowshop sequence-dependent group scheduling problem. International Journal of Production Research, 51(20), 6182-6193.
Kheirandish O., Tavakkoli-Moghaddam R. &, Karimi-Nasab M. (2015). An artificial bee colony algorithm for a two stage hybrid flowshop scheduling problem with multilevel product structures and requirement operations. International Journal of Computer Integrated Manufacturing, 28(5), 437-450.
Komaki G. M., Teymourian E., & Kayvanfar V. (2016). Minimising makespan in the two-stage assembly hybrid flow shop scheduling problem using artificial immune systems. International Journal of Production Research, 54(4), 963-983.
Kong L., Wang L., Li F., Wang G., Fu Y., & Liu J. (2020). A New Sustainable Scheduling Method for Hybrid Flow-Shop Subject to the Characteristics of Parallel Machines. IEEE Access, 8, 79998-80009.
Kurdi M. (2019). Ant colony system with a novel Non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop. Swarm and Evolutionary Computation, 44, 987–1002.
Lee GC., Hong J. M., & Choi S. H. (2015). Efficient Heuristic Algorithm for Scheduling Two-Stage Hybrid Flowshop with Sequence-Dependent Setup Times. Mathematical Problems in Engineering, 2015, 10 pages.
Lei C., Zhao N., Ye S., & Wu X. (2020). Memetic algorithm for solving flexible flow-shop scheduling problems with dynamic transport waiting times. Computers & Industrial Engineering, 139, 105984.
Li C., Lu Z., Han X., Zhang Y., & Wang L. (2016). Integrated scheduling of a container handling system with simultaneous loading and discharging operations. Engineering Optimization, 48(3), 397-414.
Li D., Meng X., Liang Q., & Zhao J. (2015). A heuristic-search genetic algorithm for multi-stage hybrid flow shop scheduling with single processing machines and batch processing machines. Journal of Intelligent Manufacturing, 26, 873-890.
Li J., & Han Y. (2020). A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system. Cluster Computing, 23, 2483-2499.
Li J., Pan Q., & Mao K. (2014a)., Suganthan P. N., Solving the steelmaking casting problem using an effective fruit fly optimisation algorithm. Knowledge-Based Systems, 72, 28-36.
Li J., Pan Q., & Mao K. (2014b). Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities. The Scientific World Journal, 2014, 11 pages.
Li J., Tao X., Jia B., Han Y., Liu C., Duan P., Zheng Z., & Sang H. (2020b). Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots. Swarm and Evolutionary Computation, 52, 100600.
Li L., Huo J., & Tang O. (2011). A hybrid flowshop scheduling problem for a cold treating process in seamless steel tube production. International Journal of Production Research, 49(15), 4679-4700.
Li Y., Li X., Gao L., & Meng L. (2020c). An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times. Computers & Industrial Engineering, 147, 106638.
Li Y., Li X., Gao L., Zhang B., Pan QK., Tasgetiren M. F., & Meng L. (2020a). A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times. International Journal of Production Research, 10.1080/00207543.2020.1753897.
Li Y., Wang H., Li Y., & Li L. (2019a). Patient assignment scheduling in a cloud healthcare system based on petri net and greedy based heuristic. Enterprise Information Systems, 13(4), 515-533.
Li Z., Chen Q., & Mao N. (2013a). A heuristic algorithm for two-stage flexible flow shop scheduling with head group constraint. International Journal of Production Research, 51(3), 751-771.
Li Z., Chen Q., Mao N., Wang X., & Liu J. (2013b). Scheduling rules for two-stage flexible flow shop scheduling problem subject to tail group constraint. International Journal of Production Economics, 146, 667-678.
Li Z., Zhong R. Y., Barenji A. V., Liu J. J., Yu C. X., & Huang G. Q. (2019b). Bi‑objective hybrid flow shop scheduling with common due date. Operational Research, 10.1007/s12351-019-00470-8.
Liao CJ., Tjandradjaja E., & Chung TP. (2012). An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Applied Soft Computing, 12, 1755-1764.
Lin D., Lee C. K. M., & Wu Z. (2012). Integrating analytical hierarchy process to genetic algorithm for re-entrant flow shop scheduling problem. International Journal of Production Research, 50(7), 1813-1824.
Lin SW., Ying KC., & Huang CY. (2013). Multiprocessor task scheduling in multistage hybrid flowshops: A hybrid artificial bee colony algorithm with bi-directional planning. Computers & Operations Research, 40, 1186-1195.
Liu J., Han W., Li J., Zhang Y., & Su X. (2020a). Integration Design of Sortie Scheduling for Carrier Aircrafts Based on Hybrid Flexible Flowshop. IEEE Systems Journal, 14(1), 1503-1511.
Liu M., Yang X., Chu F., Zhang J., & Chu C. (2020c). Energy-oriented bi-objective optimization for the tempered glass scheduling. Omega, 90, 101995.
Liu M., Yang X., Zhang J., & Chu C. (2017). Scheduling a tempered glass manufacturing system: a three-stage hybrid flow shop model. International Journal of Production Research, 55(20), 6084-6107.
Liu Z., Yan J., Cheng Q., Yang C., Sun S., & Xue D. (2020b). The mixed production mode considering continuous and intermittent processing for an energy-efficient hybrid flow shop scheduling. Journal of Cleaner Production, 246, 119071.
Long J., Zheng Z., Gao X., & Pardalos PM. (2018). Scheduling a realistic hybrid flow shop with stage skipping andadjustable processing time in steel plants. Applied Soft Computing, 64, 536-549.
Lu C., Gao L., Pan Q., Li X., & Zheng J. (2019). A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution. Applied Soft Computing, 75, 728-749.
Luo H., Huang G. Q., Zhang Y. F., & Dai Q. Y. (2011). Hybrid flowshop scheduling with batch-discrete processors and machine maintenance in time windows. International Journal of Production Research, 49(6), 1575-1603.
Luo J., Fujimura S., El Baz D., & Plazoles B. (2019). GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem. Journal of Parallel and Distributed Computing, 133, 244-257.
Mao K., Pan Q., Pang X., & Chai T. (2014). A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process. European Journal of Operational Research, 236, 51-60.
Marichelvam M. K., Geetha M., & Tosun O. (2020). An improved particle swarm optimization algorithm to solve hybrid flowshop scheduling problems with the effect of human factors - A case study. Computers and Operations Research, 114, 104812.
Marichelvam M. K., Prabaharan T., & Yang X. S. (2014a). A Discrete Firefly Algorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems. IEEE Transactions on Evolutionary Computation, 18(2), 301-305.
Marichelvam M. K., Prabaharan T., & Yang X. S. (2014b). Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing, 19, 93-101.
Meghdari A., Fazlollahtabar S., & Darband H. (2015). Flexible Flow Shop Scheduling with Learning and Forgetting Effects. Journal of Mechanical Engineering Research and Developments, 38(2), 116-125.
Meng L., Zhang C., Shao X., Ren Y., & Ren C. (2019). Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines. International Journal of Production Research, 57(4), 1119-1145.
Moher D., Liberati A., Tetzlaff J., & Altman D. G. (2009a). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, 151(4), 264-270.
Moher D., Liberati A., Tetzlaff J., & Altman D. G. (2009b). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement, Plos Medicine, 6(7), 1-6.
Mollaei A., Mohammadi M., & Naderi B. (2019). A bi-objective MILP model for blocking hybrid flexible flow shop scheduling problem: robust possibilistic programming approach. International Journal of Management Science and Engineering Management, 14(2), 137-146.
Morais M. F., Filho M. G., & Boiko T. J. P. (2013). Hybrid Flow Shop Scheduling Problems Involving Setup Considerations: A Literature Review and Analysis. International Journal of Industrial Engineering, 20(11-12), 614-630.
Naderi B., & Yazdani M. (2014). A model and imperialist competitive algorithm for hybrid flow shops with sublots and setup times. Journal of Manufacturing Systems, 33, 647-653.
Naderi B., Gohari S., & Yazdani M. (2014). Hybrid flexible flowshop problems: Models and solution methods. Applied Mathematical Modelling, 38, 5767-5780.
Nejati M., Mahdavi I., Hassanzadeh R., & Mahdavi-Amiri N. (2016). Lot streaming in a two-stage assembly hybrid flow shop scheduling problem with a work shift constraint. Journal of Industrial and Production Engineering, 33(7), 459-471.
Nejati M., Mahdavi I., Hassanzadeh R., Mahdavi-Amiri N., & Mojarad M. S. (2014). Multi-job lot streaming to minimize the weighted completion time in a hybrid flow shop scheduling problem with work shift constraint. International Journal of Advanced Manufacturing Technology, 70, 501-514.
Neufeld J. S., Gupta J. N. D., & Buscher U. (2016). A comprehensive review of flowshop group scheduling literature. Computers & Operations Research, 70, 56-74.
Nikzad F., Rezaeian J., Mahdavi I., & Rastgar I. (2015). Scheduling of multi-component products in a two-stage flexible flow shop. Applied Soft Computing, 32, 132-143.
Nishi T., Hiranaka Y., & Inuiguchi M. (2010). Lagrangian relaxation with cut generation for hybrid flowshop scheduling problems to minimize the total weighted tardiness. Computers & Operations Research, 37, 189-198.
Niu Q., Zhou T., Fei M., & Wang B. (2012). An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems. Mathematics and Computers in Simulation, 84, 1-25.
Oztop H., Tasgetiren M. F., Kandiller L., Türsel Eliiyi D., & Gao L. (2020). Ensemble of metaheuristics for energy-efficient hybrid flowshops: Makespan versus total energy consumption. Swarm and Evolutionary Computation, 54, 100660.
Oztop H., Tasgetiren M. F., Türsel Eliiyi D., & Pan QK. (2019). Metaheuristic algorithms for the hybrid flowshop scheduling problem. Computers and Operations Research, 111, 177-196.
Pan QK. (2016). An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling. European Journal of Operational Research, 250, 702-714.
Pan QK., & Dong Y. (2014). An improved migrating birds optimisation for a hybrid flowshop scheduling with total flowtime minimisation. Information Sciences, 277, 643-655.
Pan QK., Wang L., Li JQ., & Duan JH. (2014). A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation. OMEGA, 45, 42-56.
Pargar F., & Zandieh M. (2012). Bi-criteria SDST hybrid flow shop scheduling with learning effect of setup times: water flow-like algorithm approach. International Journal of Production Research, 50(10), 2609-2623.
Peng K., Pan Q., & Zhang B. (2018b). An improved artificial bee colony algorithm for steelmaking-refining-continuous casting scheduling problem. Chinese Journal of Chemical Engineering, 26, 1727–1735.
Peng K., Pan QK., Gao L., Zhang B., & Pang X. (2018a). An Improved Artificial Bee Colony algorithm for real-world hybrid flowshop rescheduling in Steelmaking-Refining-Continuous Casting process. Computers & Industrial Engineering, 122, 235-250.
Pinedo M. L. (2008). Scheduling theory, algorithms, and systems. 3rd ed., Springer, New York.
Qin T., Du Y., Chen J. H., & Sha M. (2020). Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel. European Journal of Operational Research, 285(3), 884-901.
Qin W., Zhuang Z., Liu Y., & Tang O. (2019). A two-stage ant colony algorithm for hybrid flow shop scheduling with lot sizing and calendar constraints in printed circuit board assembly. Computers & Industrial Engineering, 138, 106-115.
Rahmani D., & Ramezanian R. (2016). A stable reactive approach in dynamic flexible flow shop scheduling with unexpected disruptions: A case study. Computers & Industrial Engineering, 98, 360-372.
Rahmani D., Heydari M., Makui A., & Zandieh M. (2013). A new approach to reducing the effects of stochastic disruptions in flexible flow shop problems with stability and nervousness. International Journal of Management Science and Engineering Management, 8(3), 173-178.
Raissi S., Rooeinfar R., & Ghezavati V. R. (2019). Three Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint. Journal of Optimization in Industrial Engineering, 12(2), 131-147.
Ramezanian R., Sanami S. F., & Nikabadi M .S. (2017). A simultaneous planning of production and scheduling operations in flexible flow shops: case study of tile industry. International Journal of Advanced Manufacturing Technology, 88, 2389-2403.
Ribas I., Leisten R., & Framinan J. M. (2010). Review and classification of hybrid flowshop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37, 1439-1454.
Rooeinfar R., Raissi S., & Ghezavati VR. (2019). Stochastic flexible flow shop scheduling problem with limited buffers and fixed interval preventive maintenance: a hybrid approach of simulation and metaheuristic algorithms. Simulation, 95(6), 509–528.
Rossi A., Puppato A., & Lanzetta M. (2013). Heuristics for scheduling a two-stage hybrid flow shop with parallel batching machines: application at a hospital sterilisation plant. International Journal of Production Research, 51(8), 2363-2376.
Ruiz R., & Vazquez-Rodriguez J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205, 1-18.
Sawik T. (2012). Batch versus cyclic scheduling of flexible flow shops by mixed-integer programming. International Journal of Production Research, 50(18), 5017-5034.
Schulz S., Buscher U., & Shen L. (2020). Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices. Journal of Business Economics, 90, 1315-1343.
Schulz S., Neufeld J. S., & Buscher U. (2019). A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of Cleaner Production, 224, 421-434.
Seidgar H., Zandieh M., & Mahdavi I. (2016). Bi-objective optimization for integrating production and preventive maintenance scheduling in two-stage assembly flow shop problem. Journal of Industrial and Production Engineering, 33(6), 404-425.
Shahvari O., Salmasi N., Logendran R., & Abbasi B. (2012). An efficient tabu search algorithm for flexible flow shop sequence-dependent group scheduling problems. International Journal of Production Research, 50(15), 4237-4254.
Shao W., Shao Z., & Pi D. (2020). Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem. Knowledge-Based Systems, 194, 105527.
Sheikh S. (2013). Multi-objective flexible flow lines with due window, time lag, and job rejection. International Journal of Advanced Manufacturing Technology, 64, 1423-1433.
Shen J., Wang L., & Zheng H. (2016). A modified teaching-learning-based optimisation algorithm for bi-objective re-entrant hybrid flowshop scheduling. International Journal of Production Research, 54(12), 3622-3639.
Shiau DF., & Huang YM. (2012). A hybrid two-phase encoding particle swarm optimization for total weighted completion time minimization in proportionate flexible flow shop scheduling. International Journal of Advanced Manufacturing Technology, 58, 339-357.
Shim SO., Park KB., & Choi SY. (2017). Innovative Production Scheduling with Customer Satisfaction Based Measurement for the Sustainability of Manufacturing Firms. Sustainability, 9, 2249.
Solano-Charris E. L., Montoya-Torres J. R., & Paternina-Arboleda C. D. (2011). Ant colony optimization algorithm for a Bi-criteria 2-stage hybrid flowshop scheduling problem. Journal of Intelligent Manufacturing, 22, 815-822.
Soltani S. & A., Karimi B. (2015). Cyclic hybrid flow shop scheduling problem with limited buffers and machine eligibility constraints. International Journal of Advanced Manufacturing Technology, 76, 1739-1755.
Sun Y., & Qi X. (2020). A DE-LS Metaheuristic Algorithm for Hybrid Flow-Shop Scheduling Problem considering Multiple Requirements of Customers. Scientific Programming, 2020, 8811391.
Tadayon B., & Salmasi N. (2013). A two-criteria objective function flexible flowshop scheduling problem with machine eligibility constraint. International Journal of Advanced Manufacturing Technology, 64, 1001-1015.
Tan Y., Mönch L., & Fowler J. W. (2018). A hybrid scheduling approach for a two-stage flexible flow shop with batch processing machines. Journal of Scheduling, 21, 209-226.
Tang D., Dai M., Salido M. A., & Giret A. (2016). Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Computers in Industry, 81, 82–95.
Tang J., & Song J. (2010). Discrete particle swarm optimisation combined with no-wait algorithm in stages for scheduling mill roller annealing process. International Journal of Computer Integrated Manufacturing, 23(11), 979-991.
Wang B., Huang K., & Li T. (2018). Two-stage hybrid flowshop scheduling with simultaneous processing machines. Journal of Scheduling, 21, 387-411.
Wang K., & Choi S. H. (2012). A decomposition-based approach to flexible flow shop scheduling under machine breakdown. International Journal of Production Research, 50(1), 215-234.
Wang K., & Choi S. H. (2014). A holonic approach to flexible flow shop scheduling under stochastic processing times. Computers & Operations Research, 43, 157-168.
Wang K., Choi S. H., & Qin H. (2014b). An estimation of distribution algorithm for hybrid flow shop scheduling under stochastic processing times. International Journal of Production Research, 52(24), 7360-7376.
Wang LC., Chen YY., Chen TL., Cheng CY., & Chang CW. (2014a). A hybrid flowshop scheduling model considering dedicated machines and lot-splitting for the solar cell industry. International Journal of Systems Science, 45(10), 2055-2071.
Wang S., Liu M., & Chu C. (2015). A branch-and-bound algorithm for two-stage nowait hybrid flow-shop scheduling. International Journal of Production Research, 53(4), 1143-1167.
Wang S., Wang L., Liu M., & Xu Y. (2013). An enhanced estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with identical parallel machines. International Journal of Advanced Manufacturing Technology, 68, 2043-2056.
Wang S., Wang X., Chu F., & Yu J. (2020). An energy-efficient two-stage hybrid flow shop scheduling problem in a glass production. International Journal of Production Research, 58(8), 2283-2314.
Worasan K., Sethanan K., Pitakaso R., Moonsri K., & Nitisiri K. (2020). Hybrid particle swarm optimization and neighborhood strategy search for scheduling machines and equipment and routing of tractors in sugarcane field preparation. Computers and Electronics in Agriculture, 178, 105733.
Wu X., Shen X., & Cui Q. (2018). Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy. Sustainability, 10, 841.
Xiong F., Xing K., & Wang F. (2015). Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time. European Journal of Operational Research, 240, 338-354.
Xu Y., Wang L., Wang S., & Liu M. (2013). An effective shuffled frog-leaping algorithm for solving the hybrid flow-shop scheduling problem with identical parallel machines. Engineering Optimization, 45(12), 1409-1430.
Xuan H., Zhang H., & Li B. (2019). An Improved Discrete Artificial Bee Colony Algorithm for Flexible Flowshop Scheduling with Step Deteriorating Jobs and Sequence-Dependent Setup Times. Mathematical Problems in Engineering, 2019, 13 pages.
Yalaoui N., Ouazene Y. ,Yalaoui F., Amodeo L., & Mahdi H. (2013). Fuzzy-metaheuristic methods to solve a hybrid flow shop scheduling problem with preassignment. International Journal of Production Research, 51(12), 3609-3624.
Yan J., Li L., Zhao F., Zhang F., & Zhao Q. (2016). A multi-level optimization approach for energy-efficient flexible flow shop scheduling. Journal of Cleaner Production, 137, 1543-1552.
Ying KC., & Lin SW. (2018). Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks. Expert Systems With Applications, 92, 132–141.
Yu JM., Huang R., & Lee DH. (2017). Iterative algorithms for batching and scheduling to minimise the total job tardiness in two-stage hybrid flow shops. International Journal of Production Research, 55(11), 3266-3282.
Yu SC. (2014). Elucidating multiprocessors flow shop scheduling with dependent setup times using a twin particle swarm optimization. Applied Soft Computing, 21, 578-589.
Zabihzadeh S. S., & Rezaeian J. (2016). Two meta-heuristic algorithms for flexible flow shop schedulingproblem with robotic transportation and release time. Applied Soft Computing, 40, 319-330.
Zeng Z., Hong M., Man Y., Li J., Zhang Y., & Liu H. (2018). Multi-object optimization of flexible flow shop scheduling with batch process - Consideration total electricity consumption and material wastage. Journal of Cleaner Production, 183, 925-939.
Zhang B., Pan Q., Gao L., Li X., Meng L., & Peng K. (2019). A multiobjective evolutionary algorithm based on decomposition for hybrid flowshop green scheduling problem. Computers & Industrial Engineering, 136, 325-344.
Zhang B., Pan Q., Gao L., Zhang X., & Sang H., Li J. (2017). An effective modified migrating birds optimization for hybrid flowshop scheduling problem with lot streaming. Applied Soft Computing, 52, 14-27.
Zhang X. Y., & Chen L. (2018). A re-entrant hybrid flow shop scheduling problem with machine eligibility constraints. International Journal of Production Research, 56(16), 5293-5305.
Zhou B., Hu L., & Zhong Z. (2018). A hybrid differential evolution algorithm with estimation of distribution algorithm for reentrant hybrid flow shop scheduling problem. Neural Computing and Applications, 30, 193-209.
Zhou B., Liao X., & Wang K. (2019). Kalman filter and multi-stage learning-based hybrid differential evolution algorithm with particle swarm for a two-stage flow shops scheduling problem. Soft Computing, 23, 13067-13083.
Ziaeifar A., Tavakkoli-Moghaddam R., & Pichka K. (2012). Solving a new mathematical model for a hybrid flow shop scheduling problem with a processor assignment by a genetic algorithm. International Journal of Advanced Manufacturing Technology, 61, 339-349.
Zohali H., Naderi B., & Mohammadi M. (2019b). The economic lot scheduling problem in limited-buffer flexible flow shops: Mathematical models and a discrete fruit fly algorithm. Applied Soft Computing, 80, 904-919.
Zohali H., Naderi B., Mohammadi M., & Roshanaei V. (2019a). Reformulation, linearization, and a hybrid iterated local search algorithm for economic lot-sizing and sequencing in hybrid flow shop problems. Computers and Operations Research, 104, 127–138.