How to cite this paper
Tai, P., Huyen, P & Buddhakulsomsiri, J. (2021). A novel modeling approach for a capacitated (S,T) inventory system with backlog under stochastic discrete demand and lead time.International Journal of Industrial Engineering Computations , 12(1), 1-14.
Refrences
Archibald, T. W. (2007). Modelling replenishment and transshipment decisions in periodic review multilocation inventory systems. Journal of the Operational Research Society, 58(7), 948-956.
Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275-284.
Bulinskaya, E. V. (1990). Inventory control in case of unknown demand distribution. Engineering Costs and Production Economics, 19(1-3), 301-306.
Gallego, G. (1992). A minmax distribution free procedure for the (Q, R) inventory model. Operations Research Letters, 11(1), 55-60.
Gallego, G., & Moon, I. (1993). The distribution free newsboy problem: review and extensions. Journal of the Operational Research Society, 44(8), 825-834.
Hadley, G.. & Whitin, T. M. (1963). Analysis of Inventory Systems. Prentice-Hall.
Hariga, M. A. (2010). A single-item continuous review inventory problem with space restriction. International Journal of Production Economics, 128(1), 153-158.
Janssen, L., Claus, T., & Sauer, J. (2016). Literature review of deteriorating inventory models by key topics from 2012 to 2015. International Journal of Production Economics, 182, 86-112.
Keaton, M. (1995). Using the gamma distribution to model demand when lead time. Journal of Business Logistics, 16(1), 107.
Lee, H. L., Padmanabhan, V., & Whang, S. (1997a). The bullwhip effect in supply chains. Sloan Management Review, 38, 93-102.
Lee, H. L., Padmanabhan, V., & Whang, S. (1997b). Information distortion in a supply chain: The bullwhip effect. Management science, 43(4), 546-558.
Lee, J. Y., Cho, R. K., & Paik, S. K. (2016). Supply chain coordination in vendor-managed inventory systems with stockout-cost sharing under limited storage capacity. European Journal of Operational Research, 248(1), 95-106.
Levén, E., & Segerstedt, A. (2004). Inventory control with a modified Croston procedure and Erlang distribution. International journal of production economics, 90(3), 361-367.
Moharana, U. C., & Sarmah, S. P. (2016). Determination of optimal order-up to level quantities for dependent spare parts using data mining. Computers & Industrial Engineering, 95, 27-40.
Moon, I., & Choi, S. (1994). The distribution free continuous review inventory system with a service level constraint. Computers & industrial engineering, 27(1-4), 209-212.
Moon, I., & Choi, S. (1995). The distribution free newsboy problem with balking. Journal of the Operational Research Society, 46(4), 537-542.
Nenes, G., Panagiotidou, S., & Tagaras, G. (2010). Inventory management of multiple items with irregular demand: A case study. European Journal of Operational Research, 205(2), 313-324.
Pan, A., Hui, C. L., & Ng, F. (2014). An optimization of inventory policy based on health care apparel products with compound poisson demands. Mathematical Problems in Engineering, 2014.
Sana, S. S. (2015). An EOQ model for stochastic demand for limited capacity of own warehouse. Annals of Operations Research, 233(1), 383-399.
Scarf, H. (1958). A min-max solution of an inventory problem. Studies in the Mathematical Theory of Inventory and Production.
Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and scheduling (Vol. 3, p. 30). New York: Wiley.
Silver, E. A., Pyke, D. F., & Thomas, D. J. (2016). Inventory and production management in supply chains. CRC Press.
Singha, K., Buddhakulsomsiri, J., & Parthanadee, P. (2017). Mathematical Model of Inventory Policy under Limited Storage Space for Continuous and Periodic Review Policies with Backlog and Lost Sales. Mathematical Problems in Engineering, 2017.
Singha, K., Buddhakulsomsiri, J., & Parthanadee, P. (2019). Computational experiment of methods to determine periodic (R, Q) inventory policy parameters: a case study of information decentralised distribution network. International Journal of Industrial and Systems Engineering, 32(2), 212-242.
Teunter, R. H., Syntetos, A. A., & Babai, M. Z. (2010). Determining order-up-to levels under periodic review for compound binomial (intermittent) demand. European Journal of Operational Research, 203(3), 619-624.
Vollmann, T., Berry, W., and Whybark, D. (1997). Manufacturing Planning and Control System. Irwin/McGraw-Hill: New York, 4th edition.
Zhao, X., Qiu, M., Xie, J., & He, Q. (2012). Computing (r, Q) policy for an inventory system with limited sharable resource. Computers & Operations Research, 39(10), 2368-2379.
Zipkin, P. (1988). The use of phase‐type distributions in inventory‐control models. Naval Research Logistics (NRL), 35(2), 247-257.
Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275-284.
Bulinskaya, E. V. (1990). Inventory control in case of unknown demand distribution. Engineering Costs and Production Economics, 19(1-3), 301-306.
Gallego, G. (1992). A minmax distribution free procedure for the (Q, R) inventory model. Operations Research Letters, 11(1), 55-60.
Gallego, G., & Moon, I. (1993). The distribution free newsboy problem: review and extensions. Journal of the Operational Research Society, 44(8), 825-834.
Hadley, G.. & Whitin, T. M. (1963). Analysis of Inventory Systems. Prentice-Hall.
Hariga, M. A. (2010). A single-item continuous review inventory problem with space restriction. International Journal of Production Economics, 128(1), 153-158.
Janssen, L., Claus, T., & Sauer, J. (2016). Literature review of deteriorating inventory models by key topics from 2012 to 2015. International Journal of Production Economics, 182, 86-112.
Keaton, M. (1995). Using the gamma distribution to model demand when lead time. Journal of Business Logistics, 16(1), 107.
Lee, H. L., Padmanabhan, V., & Whang, S. (1997a). The bullwhip effect in supply chains. Sloan Management Review, 38, 93-102.
Lee, H. L., Padmanabhan, V., & Whang, S. (1997b). Information distortion in a supply chain: The bullwhip effect. Management science, 43(4), 546-558.
Lee, J. Y., Cho, R. K., & Paik, S. K. (2016). Supply chain coordination in vendor-managed inventory systems with stockout-cost sharing under limited storage capacity. European Journal of Operational Research, 248(1), 95-106.
Levén, E., & Segerstedt, A. (2004). Inventory control with a modified Croston procedure and Erlang distribution. International journal of production economics, 90(3), 361-367.
Moharana, U. C., & Sarmah, S. P. (2016). Determination of optimal order-up to level quantities for dependent spare parts using data mining. Computers & Industrial Engineering, 95, 27-40.
Moon, I., & Choi, S. (1994). The distribution free continuous review inventory system with a service level constraint. Computers & industrial engineering, 27(1-4), 209-212.
Moon, I., & Choi, S. (1995). The distribution free newsboy problem with balking. Journal of the Operational Research Society, 46(4), 537-542.
Nenes, G., Panagiotidou, S., & Tagaras, G. (2010). Inventory management of multiple items with irregular demand: A case study. European Journal of Operational Research, 205(2), 313-324.
Pan, A., Hui, C. L., & Ng, F. (2014). An optimization of inventory policy based on health care apparel products with compound poisson demands. Mathematical Problems in Engineering, 2014.
Sana, S. S. (2015). An EOQ model for stochastic demand for limited capacity of own warehouse. Annals of Operations Research, 233(1), 383-399.
Scarf, H. (1958). A min-max solution of an inventory problem. Studies in the Mathematical Theory of Inventory and Production.
Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and scheduling (Vol. 3, p. 30). New York: Wiley.
Silver, E. A., Pyke, D. F., & Thomas, D. J. (2016). Inventory and production management in supply chains. CRC Press.
Singha, K., Buddhakulsomsiri, J., & Parthanadee, P. (2017). Mathematical Model of Inventory Policy under Limited Storage Space for Continuous and Periodic Review Policies with Backlog and Lost Sales. Mathematical Problems in Engineering, 2017.
Singha, K., Buddhakulsomsiri, J., & Parthanadee, P. (2019). Computational experiment of methods to determine periodic (R, Q) inventory policy parameters: a case study of information decentralised distribution network. International Journal of Industrial and Systems Engineering, 32(2), 212-242.
Teunter, R. H., Syntetos, A. A., & Babai, M. Z. (2010). Determining order-up-to levels under periodic review for compound binomial (intermittent) demand. European Journal of Operational Research, 203(3), 619-624.
Vollmann, T., Berry, W., and Whybark, D. (1997). Manufacturing Planning and Control System. Irwin/McGraw-Hill: New York, 4th edition.
Zhao, X., Qiu, M., Xie, J., & He, Q. (2012). Computing (r, Q) policy for an inventory system with limited sharable resource. Computers & Operations Research, 39(10), 2368-2379.
Zipkin, P. (1988). The use of phase‐type distributions in inventory‐control models. Naval Research Logistics (NRL), 35(2), 247-257.