How to cite this paper
Fathallah, B., Saidi, R., Dakhli, C., Belhadi, S & Yallese, M. (2019). Mathematical modelling and optimization of surface quality and productivity in turning process of AISI 12L14 free-cutting Steel.International Journal of Industrial Engineering Computations , 10(4), 557-576.
Refrences
Bhattacharya, D., & Quinto, D. T. (1980). Mechanism of hot-shortness in leaded and tellurized free-machining steels. Metallurgical Transactions A, 11(6), 919-934.
Bouchelaghem, H., Yallese, M. A., Mabrouki, T., Amirat, A., & Rigal, J. F. (2010). Experimental investigation and performance analyses of CBN insert in hard turning of cold work tool steel (D3). Machining Science and Technology, 14(4), 471-501.
Bouzid, L., Boutabba, S., Yallese, M. A., Belhadi, S., & Girardin, F. (2014). Simultaneous optimization of surface roughness and material removal rate for turning of X20Cr13 stainless steel. The International Journal of Advanced Manufacturing Technology, 74(5-8), 879-891.
Costa, D. M. D., Paula, T. I., Silva, P. A. P., & Paiva, A. P. (2016). Normal boundary intersection method based on principal components and Taguchi’s signal-to-noise ratio applied to the multiobjective optimization of 12L14 free machining steel turning process. The International Journal of Advanced Manufacturing Technology, 87(1-4), 825-834.
Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 8(3), 631-657.
de Freitas Gomes, J. H., Júnior, S., Ramos, A., de Paiva, A. P., Ferreira, J. R., da Costa, S. C., & Balestrassi, P. P. (2012). Global Criterion Method Based on Principal Components to the Optimization of Manufacturing Processes with Multiple Responses. Strojniski Vestnik/Journal of Mechanical Engineering, 58(5), 345-353.
Dureja, J. S., Gupta, V. K., Sharma, V. S., & Dogra, M. (2010). Design optimisation of flank wear and surface roughness for CBN-TiN tools during dry hard turning of hot work die steel. International Journal of Machining and Machinability of Materials, 7(1-2), 129-147.
Early, J. G. (1984). Mechanical Properties of a Leaded, Resulfurized, Rephosphorized Steel in Various Thermo/Mechanical Conditions.
Fnides, B., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2011). Application of response surface methodology for determining cutting force model in turning hardened AISI H11 hot work tool steel. Sadhana, 36(1), 109.
Harrington, Edwin C. J. (1965). ASQ: The Desirability Function.
Hwang, Y. K., & Lee, C. M. (2010). Surface roughness and cutting force prediction in MQL and wet turning process of AISI 1045 using design of experiments. Journal of Mechanical Science and Technology, 24(8), 1669-1677.
Kandananond, K. (2009). The determination of empirical model for surface roughness in turning process using design of experiment. WSEAS Transactions on Systems, 8(10).
Kandananond, K. (2010). Using the response surface method to optimize the turning process of AISI 12L14 steel. Advances in Mechanical Engineering, 2, 362406.
Kishawy, H. A., Hosseini, A., Moetakef-Imani, B., & Astakhov, V. P. (2012). An energy based analysis of broaching operation: Cutting forces and resultant surface integrity. CIRP annals, 61(1), 107-110.
Luiz, N. E., & Machado, Á. R. (2008). Development trends and review of free-machining steels. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(2), 347-360.
Meddour, I., Yallese, M. A., Khattabi, R., Elbah, M., & Boulanouar, L. (2015). Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. The International Journal of Advanced Manufacturing Technology, 77(5-8), 1387-1399.
MEHANSKE, A. V. T. O. N., & JEKEL, L. A. (2016). Analyzin the heat-treatment effect on the mechanical properties of free-cutting steels. Materiali in tehnologije, 50(3), 337-341.
Overcash, J. L., & Cuttino, J. F. (2009). Design and experimental results of a tunable vibration turning device operating at ultrasonic frequencies. Precision Engineering, 33(2), 127-134.
Peruchi, R. S., Paiva, A. D., Balestrassi, P. P., Ferreira, J. R., & Sawhney, R. (2014). Weighted approach for multivariate analysis of variance in measurement system analysis. Precision Engineering, 38(3), 651-658.
Pierson, G. (1989). Les aciers doux de décolletage: évolutions des procédés et des performances sur produits. Revue de Métallurgie, 86(9), 707-724.
Reis, L. L., Silva Júnior, W. M. D., & Machado, Á. R. (2007). Effect of cutting speed and cutting fluid on the BUE geometry of a SAE 12L14 free machining steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 29(2), 196-201.
Roelofs, H., Boeira, A. M. G., Margot, R., Gomes, J. T., & Eglin, M. (2008). Machinability of inclusion engineered free cutting steel under built-up edge conditions. In 8th International Conference on Advanced Manufacturing Systems and Technology (AMST2008). Unknown.
Saidi, R., Fathallah, B. B., Mabrouki, T., Belhadi, S., & Yallese, M. A. (2018). Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function. The International Journal of Advanced Manufacturing Technology, 100(9-12), 2945-2968.
Sarıkaya, M., & Güllü, A. (2014). Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. Journal of Cleaner Production, 65, 604-616.
Selvakumar, S., Kumar, R. R., & Ganesan, K. (2015). Analysis and optimisation of machining parameters in micro turning using RSM. International Journal of Materials and Product Technology, 51(1), 75-97.
Song, S. Q., & Zuo, D. W. (2014). Modelling and simulation of whirling process based on equivalent cutting volume. Simulation Modelling Practice and Theory, 42, 98-106.
Tebassi, H., Yallese, M., & Meddour, I. (2016). A new method for evaluation nominal coefficient of friction and frictional forces in turning and inserts characterization using cutting forces profiles. Engineering Solid Mechanics, 4(1), 1-10.
Thangavel, P., & Selladurai, V. (2008). An experimental investigation on the effect of turning parameters on surface roughness. IJMR, 3(3), 285-300.
Xu, J. Y., An, Q. L., & Chen, M. (2012). Experimental study on high-speed turning of free-cutting steel AISI 12L14 using multi-layer coated carbide tools. Advanced Materials Research, 500, 3-7.
Yaguchi, H., & Bhattacharya, D. (1988). An investigation of factors controlling part growth and surface finish of form tools in the automatic screw machine test. Journal of Materials Shaping Technology, 5(4), 231-241.
Bouchelaghem, H., Yallese, M. A., Mabrouki, T., Amirat, A., & Rigal, J. F. (2010). Experimental investigation and performance analyses of CBN insert in hard turning of cold work tool steel (D3). Machining Science and Technology, 14(4), 471-501.
Bouzid, L., Boutabba, S., Yallese, M. A., Belhadi, S., & Girardin, F. (2014). Simultaneous optimization of surface roughness and material removal rate for turning of X20Cr13 stainless steel. The International Journal of Advanced Manufacturing Technology, 74(5-8), 879-891.
Costa, D. M. D., Paula, T. I., Silva, P. A. P., & Paiva, A. P. (2016). Normal boundary intersection method based on principal components and Taguchi’s signal-to-noise ratio applied to the multiobjective optimization of 12L14 free machining steel turning process. The International Journal of Advanced Manufacturing Technology, 87(1-4), 825-834.
Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 8(3), 631-657.
de Freitas Gomes, J. H., Júnior, S., Ramos, A., de Paiva, A. P., Ferreira, J. R., da Costa, S. C., & Balestrassi, P. P. (2012). Global Criterion Method Based on Principal Components to the Optimization of Manufacturing Processes with Multiple Responses. Strojniski Vestnik/Journal of Mechanical Engineering, 58(5), 345-353.
Dureja, J. S., Gupta, V. K., Sharma, V. S., & Dogra, M. (2010). Design optimisation of flank wear and surface roughness for CBN-TiN tools during dry hard turning of hot work die steel. International Journal of Machining and Machinability of Materials, 7(1-2), 129-147.
Early, J. G. (1984). Mechanical Properties of a Leaded, Resulfurized, Rephosphorized Steel in Various Thermo/Mechanical Conditions.
Fnides, B., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2011). Application of response surface methodology for determining cutting force model in turning hardened AISI H11 hot work tool steel. Sadhana, 36(1), 109.
Harrington, Edwin C. J. (1965). ASQ: The Desirability Function.
Hwang, Y. K., & Lee, C. M. (2010). Surface roughness and cutting force prediction in MQL and wet turning process of AISI 1045 using design of experiments. Journal of Mechanical Science and Technology, 24(8), 1669-1677.
Kandananond, K. (2009). The determination of empirical model for surface roughness in turning process using design of experiment. WSEAS Transactions on Systems, 8(10).
Kandananond, K. (2010). Using the response surface method to optimize the turning process of AISI 12L14 steel. Advances in Mechanical Engineering, 2, 362406.
Kishawy, H. A., Hosseini, A., Moetakef-Imani, B., & Astakhov, V. P. (2012). An energy based analysis of broaching operation: Cutting forces and resultant surface integrity. CIRP annals, 61(1), 107-110.
Luiz, N. E., & Machado, Á. R. (2008). Development trends and review of free-machining steels. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(2), 347-360.
Meddour, I., Yallese, M. A., Khattabi, R., Elbah, M., & Boulanouar, L. (2015). Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. The International Journal of Advanced Manufacturing Technology, 77(5-8), 1387-1399.
MEHANSKE, A. V. T. O. N., & JEKEL, L. A. (2016). Analyzin the heat-treatment effect on the mechanical properties of free-cutting steels. Materiali in tehnologije, 50(3), 337-341.
Overcash, J. L., & Cuttino, J. F. (2009). Design and experimental results of a tunable vibration turning device operating at ultrasonic frequencies. Precision Engineering, 33(2), 127-134.
Peruchi, R. S., Paiva, A. D., Balestrassi, P. P., Ferreira, J. R., & Sawhney, R. (2014). Weighted approach for multivariate analysis of variance in measurement system analysis. Precision Engineering, 38(3), 651-658.
Pierson, G. (1989). Les aciers doux de décolletage: évolutions des procédés et des performances sur produits. Revue de Métallurgie, 86(9), 707-724.
Reis, L. L., Silva Júnior, W. M. D., & Machado, Á. R. (2007). Effect of cutting speed and cutting fluid on the BUE geometry of a SAE 12L14 free machining steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 29(2), 196-201.
Roelofs, H., Boeira, A. M. G., Margot, R., Gomes, J. T., & Eglin, M. (2008). Machinability of inclusion engineered free cutting steel under built-up edge conditions. In 8th International Conference on Advanced Manufacturing Systems and Technology (AMST2008). Unknown.
Saidi, R., Fathallah, B. B., Mabrouki, T., Belhadi, S., & Yallese, M. A. (2018). Modeling and optimization of the turning parameters of cobalt alloy (Stellite 6) based on RSM and desirability function. The International Journal of Advanced Manufacturing Technology, 100(9-12), 2945-2968.
Sarıkaya, M., & Güllü, A. (2014). Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. Journal of Cleaner Production, 65, 604-616.
Selvakumar, S., Kumar, R. R., & Ganesan, K. (2015). Analysis and optimisation of machining parameters in micro turning using RSM. International Journal of Materials and Product Technology, 51(1), 75-97.
Song, S. Q., & Zuo, D. W. (2014). Modelling and simulation of whirling process based on equivalent cutting volume. Simulation Modelling Practice and Theory, 42, 98-106.
Tebassi, H., Yallese, M., & Meddour, I. (2016). A new method for evaluation nominal coefficient of friction and frictional forces in turning and inserts characterization using cutting forces profiles. Engineering Solid Mechanics, 4(1), 1-10.
Thangavel, P., & Selladurai, V. (2008). An experimental investigation on the effect of turning parameters on surface roughness. IJMR, 3(3), 285-300.
Xu, J. Y., An, Q. L., & Chen, M. (2012). Experimental study on high-speed turning of free-cutting steel AISI 12L14 using multi-layer coated carbide tools. Advanced Materials Research, 500, 3-7.
Yaguchi, H., & Bhattacharya, D. (1988). An investigation of factors controlling part growth and surface finish of form tools in the automatic screw machine test. Journal of Materials Shaping Technology, 5(4), 231-241.