How to cite this paper
Rouky, N., Abourraja, M., Boukachour, J., Boudebous, D., Alaoui, A & Khoukhi, F. (2019). Simulation optimization based ant colony algorithm for the uncertain quay crane scheduling problem.International Journal of Industrial Engineering Computations , 10(1), 111-132.
Refrences
Abourraja, M. N., Oudani, M., Samiri, M. Y., Boudebous, D., El Fazziki, A., Najib, M., ... & Rouky, N. (2017). A multi-agent based simulation model for rail–rail transshipment: An engineering approach for gantry crane scheduling. IEEE Access, 5, 13142-13156.
Al-Dhaheri, N., Jebali, A., & Diabat, A. (2016). A simulation-based Genetic Algorithm approach for the quay crane scheduling under uncertainty. Simulation Modelling Practice and Theory, 66, 122-138.
Bencheikh, G., Boukachour, J., & Alaoui, A. E. H. (2016). A memetic algorithm to solve the dynamic multiple runway aircraft landing problem. Journal of King Saud University-Computer and Information Sciences, 28(1), 98-109.
Benghalia, A., Boukachour, J., & Boudebous, D. (2016). Gestion du transfert interne de conteneurs: le cas du port du Havre. Logistique & Management, 24(1), 57-69.
Better, M., Glover, F., Kochenberger, G., & Wang, H. (2008). Simulation optimization: Applications in risk management. International Journal of Information Technology & Decision Making, 7(04), 571-587.
Bierwirth, C., & Meisel, F. (2009). A fast heuristic for quay crane scheduling with interference constraints. Journal of Scheduling, 12(4), 345-360.
Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202(3), 615-627.
Bierwirth, C., & Meisel, F. (2015). A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 244(3), 675-689.
Boysen, N., Briskorn, D., & Meisel, F. (2017). A generalized classification scheme for crane scheduling with interference. European Journal of Operational Research, 258(1), 343-357.
Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2015). Seaside operations in container terminals: literature overview, trends, and research directions. Flexible Services and Manufacturing Journal, 27(2-3), 224-262.
Chen, J. H., Lee, D. H., & Goh, M. (2014). An effective mathematical formulation for the unidirectional cluster-based quay crane scheduling problem. European Journal of Operational Research, 232(1), 198-208.
Chung, S. H., & Choy, K. L. (2012). A modified genetic algorithm for quay crane scheduling operations. Expert Systems with Applications, 39(4), 4213-4221.
Daganzo, C. F. (1989). The crane scheduling problem. Transportation Research Part B: Methodological, 23(3), 159-175.
Dongarra, J. J. (2014). Performance of various computers using standard linear equations software. Electrical Engineering and Computer Science Department University of Tennessee, Knoxville.
Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (Vol. 2, pp. 1470-1477). IEEE.
El Khoukhi, F., Boukachour, J., & Alaoui, A. E. H. (2017). The “Dual-Ants Colony”: A novel hybrid approach for the flexible job shop scheduling problem with preventive maintenance. Computers & Industrial Engineering, 106, 236-255.
ExpóSito-Izquierdo, C., González-Velarde, J. L., Melián-Batista, B., & Moreno-Vega, J. M. (2013). Hybrid estimation of distribution algorithm for the quay crane scheduling problem. Applied Soft Computing, 13(10), 4063-4076.
Figueira, G., & Almada-Lobo, B. (2014). Hybrid simulation–optimization methods: A taxonomy and discussion. Simulation Modelling Practice and Theory, 46, 118-134.
Gabrel, V., Murat, C., & Thiele, A. (2014). Recent advances in robust optimization: An overview. European Journal of Operational Research, 235(3), 471-483.
Hansen, P., Mladenović, N., & Pérez, J. A. M. (2010). Variable neighbourhood search: methods and applications. Annals of Operations Research, 175(1), 367-407.
He, J., Zhang, W., Huang, Y., & Yan, W. (2013). A simulation optimization method for internal trucks sharing assignment among multiple container terminals. Advanced Engineering Informatics, 27(4), 598-614.
Herazo-Padilla, N., Montoya-Torres, J. R., Isaza, S. N., & Alvarado-Valencia, J. (2015). Simulation-optimization approach for the stochastic location-routing problem. Journal of Simulation, 9(4), 296-311.
Hirsch, P., Palfi, A., & Gronalt, M. (2012). Solving a time constrained two-crane routing problem for material handling with an ant colony optimisation approach: an application in the roof-tile industry. International Journal of Production Research, 50(20), 6005-6021.
Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., & Eversdyk, D. (2004). A simulation based optimization approach to supply chain management under demand uncertainty. Computers & Chemical Engineering, 28(10), 2087-2106.
Kaveshgar, N., Huynh, N., & Rahimian, S. K. (2012). An efficient genetic algorithm for solving the quay crane scheduling problem. Expert Systems with Applications, 39(18), 13108-13117.
Kelly, J. P. (2002). Simulation optimization is evolving. INFORMS Journal on Computing, 14(3), 223-225.
Kim, K. H., & Park, Y. M. (2004). A crane scheduling method for port container terminals. European Journal of Operational Research, 156(3), 752-768.
Legato, P., Mazza, R. M., & Trunfio, R. (2010). Simulation-based optimization for discharge/loading operations at a maritime container terminal. OR Spectrum, 32(3), 543-567.
Lee, D. H., Wang, H. Q., & Miao, L. (2008). Quay crane scheduling with non-interference constraints in port container terminals. Transportation Research Part E: Logistics and Transportation Review, 44(1), 124-135.
Lim, A., Rodrigues, B., & Xu, Z. (2007). A m-parallel crane scheduling problem with a non‐crossing constraint. Naval Research Logistics (NRL), 54(2), 115-127.
Lim, A., Rodrigues, B., Xiao, F., & Zhu, Y. (2004). Crane scheduling with spatial constraints. Naval Research Logistics (NRL), 51(3), 386-406.
Lim, S. J., Jeong, S. J., Kim, K. S., & Park, M. W. (2006). A simulation approach for production-distribution planning with consideration given to replenishment policies. The International Journal of Advanced Manufacturing Technology, 27(5), 593-603.
López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43-58.
Lu, Z., Han, X., Xi, L., & Erera, A. L. (2012). A heuristic for the quay crane scheduling problem based on contiguous bay crane operations. Computers & Operations Research, 39(12), 2915-2928.
Meisel, F., & Bierwirth, C. (2011). A unified approach for the evaluation of quay crane scheduling models and algorithms. Computers & Operations Research, 38(3), 683-693.
Meisel, F. (2009). Seaside operations planning in container terminals. Berlin, Heidelberg: Physica-Verlag.
Michael, P. (1995). Scheduling, theory, algorithms, and systems. Englewood Cli s, New Jersey.
Moccia, L., Cordeau, J. F., Gaudioso, M., & Laporte, G. (2006). A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Naval Research Logistics (NRL), 53(1), 45-59.
Monaco, M. F., & Sammarra, M. (2011). Quay crane scheduling with time windows, one-way and spatial constraints. International Journal of Shipping and Transport Logistics, 3(4), 454-474.
Multimethod Simulation Software and Solutions, accessed on, Nov. 22, 2015. [Online]. Available: http://www.anylogic.com/
Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2013). Hybrid evolutionary computation methods for quay crane scheduling problems. Computers & Operations Research, 40(8), 2083-2093.
Peterkofsky, R. I., & Daganzo, C. F. (1990). A branch and bound solution method for the crane scheduling problem. Transportation Research Part B: Methodological, 24(3), 159-172.
Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational Research, 155(2), 426-438.
Rouky, N., Boukachour, J., Alaoui, A.E.H, El Khoukhi, F., & Boudebous D. (2015). Un algorithme d’optimisation par colonie de fourmis pour l’ordonnancement des grues de quai. JD-JN- MACS, Bourges, France.
Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers & Chemical Engineering, 28(6), 971-983.
Sammarra, M., Cordeau, J. F., Laporte, G., & Monaco, M. F. (2007). A tabu search heuristic for the quay crane scheduling problem. Journal of Scheduling, 10(4), 327-336.
Steenken, D., Winter, T., & Zimmermann, U. T. (2001). Stowage and transport optimization in ship planning. In Online optimization of large scale systems (pp. 731-745). Springer Berlin Heidelberg.
Thiruvady, D., Ernst, A. T., & Singh, G. (2016). Parallel ant colony optimization for resource constrained job scheduling. Annals of Operations Research, 242(2), 355-372.
Tongzon, J., & Heng, W. (2005). Port privatization, efficiency and competitiveness: Some empirical evidence from container ports (terminals). Transportation Research Part A: Policy and Practice, 39(5), 405-424.
Tréfond, S., Billionnet, A., Elloumi, S., Djellab, H., & Guyon, O. (2017). Optimization and simulation for robust railway rolling-stock planning. Journal of Rail Transport Planning & Management, 7(1-2), 33-49.
UNCTAD, WID. (2014). United nations conference on trade and development. Review of Maritime Transport.
UNCTAD, WID. (2016). United nations conference on trade and development. Review of Maritime Transport.
Unsal, O., & Oguz, C. (2013). Constraint programming approach to quay crane scheduling problem. Transportation Research Part E: Logistics and Transportation Review, 59, 108-122.
Wang, Y., & Kim, K. H. (2011). A quay crane scheduling algorithm considering the workload of yard cranes in a container yard. Journal of Intelligent Manufacturing, 22(3), 459-470..
Zhou, Y., Wang, W., Song, X., & Guo, Z. (2016). Simulation-based optimization for yard design at mega container terminal under uncertainty. Mathematical Problems in Engineering, Vol. 2016.
Zhu, Y., & Lim, A. (2006). Crane scheduling with non-crossing constraint. Journal of the Operational Research Society, 57(12), 1464-1471.
Al-Dhaheri, N., Jebali, A., & Diabat, A. (2016). A simulation-based Genetic Algorithm approach for the quay crane scheduling under uncertainty. Simulation Modelling Practice and Theory, 66, 122-138.
Bencheikh, G., Boukachour, J., & Alaoui, A. E. H. (2016). A memetic algorithm to solve the dynamic multiple runway aircraft landing problem. Journal of King Saud University-Computer and Information Sciences, 28(1), 98-109.
Benghalia, A., Boukachour, J., & Boudebous, D. (2016). Gestion du transfert interne de conteneurs: le cas du port du Havre. Logistique & Management, 24(1), 57-69.
Better, M., Glover, F., Kochenberger, G., & Wang, H. (2008). Simulation optimization: Applications in risk management. International Journal of Information Technology & Decision Making, 7(04), 571-587.
Bierwirth, C., & Meisel, F. (2009). A fast heuristic for quay crane scheduling with interference constraints. Journal of Scheduling, 12(4), 345-360.
Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202(3), 615-627.
Bierwirth, C., & Meisel, F. (2015). A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 244(3), 675-689.
Boysen, N., Briskorn, D., & Meisel, F. (2017). A generalized classification scheme for crane scheduling with interference. European Journal of Operational Research, 258(1), 343-357.
Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2015). Seaside operations in container terminals: literature overview, trends, and research directions. Flexible Services and Manufacturing Journal, 27(2-3), 224-262.
Chen, J. H., Lee, D. H., & Goh, M. (2014). An effective mathematical formulation for the unidirectional cluster-based quay crane scheduling problem. European Journal of Operational Research, 232(1), 198-208.
Chung, S. H., & Choy, K. L. (2012). A modified genetic algorithm for quay crane scheduling operations. Expert Systems with Applications, 39(4), 4213-4221.
Daganzo, C. F. (1989). The crane scheduling problem. Transportation Research Part B: Methodological, 23(3), 159-175.
Dongarra, J. J. (2014). Performance of various computers using standard linear equations software. Electrical Engineering and Computer Science Department University of Tennessee, Knoxville.
Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (Vol. 2, pp. 1470-1477). IEEE.
El Khoukhi, F., Boukachour, J., & Alaoui, A. E. H. (2017). The “Dual-Ants Colony”: A novel hybrid approach for the flexible job shop scheduling problem with preventive maintenance. Computers & Industrial Engineering, 106, 236-255.
ExpóSito-Izquierdo, C., González-Velarde, J. L., Melián-Batista, B., & Moreno-Vega, J. M. (2013). Hybrid estimation of distribution algorithm for the quay crane scheduling problem. Applied Soft Computing, 13(10), 4063-4076.
Figueira, G., & Almada-Lobo, B. (2014). Hybrid simulation–optimization methods: A taxonomy and discussion. Simulation Modelling Practice and Theory, 46, 118-134.
Gabrel, V., Murat, C., & Thiele, A. (2014). Recent advances in robust optimization: An overview. European Journal of Operational Research, 235(3), 471-483.
Hansen, P., Mladenović, N., & Pérez, J. A. M. (2010). Variable neighbourhood search: methods and applications. Annals of Operations Research, 175(1), 367-407.
He, J., Zhang, W., Huang, Y., & Yan, W. (2013). A simulation optimization method for internal trucks sharing assignment among multiple container terminals. Advanced Engineering Informatics, 27(4), 598-614.
Herazo-Padilla, N., Montoya-Torres, J. R., Isaza, S. N., & Alvarado-Valencia, J. (2015). Simulation-optimization approach for the stochastic location-routing problem. Journal of Simulation, 9(4), 296-311.
Hirsch, P., Palfi, A., & Gronalt, M. (2012). Solving a time constrained two-crane routing problem for material handling with an ant colony optimisation approach: an application in the roof-tile industry. International Journal of Production Research, 50(20), 6005-6021.
Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., & Eversdyk, D. (2004). A simulation based optimization approach to supply chain management under demand uncertainty. Computers & Chemical Engineering, 28(10), 2087-2106.
Kaveshgar, N., Huynh, N., & Rahimian, S. K. (2012). An efficient genetic algorithm for solving the quay crane scheduling problem. Expert Systems with Applications, 39(18), 13108-13117.
Kelly, J. P. (2002). Simulation optimization is evolving. INFORMS Journal on Computing, 14(3), 223-225.
Kim, K. H., & Park, Y. M. (2004). A crane scheduling method for port container terminals. European Journal of Operational Research, 156(3), 752-768.
Legato, P., Mazza, R. M., & Trunfio, R. (2010). Simulation-based optimization for discharge/loading operations at a maritime container terminal. OR Spectrum, 32(3), 543-567.
Lee, D. H., Wang, H. Q., & Miao, L. (2008). Quay crane scheduling with non-interference constraints in port container terminals. Transportation Research Part E: Logistics and Transportation Review, 44(1), 124-135.
Lim, A., Rodrigues, B., & Xu, Z. (2007). A m-parallel crane scheduling problem with a non‐crossing constraint. Naval Research Logistics (NRL), 54(2), 115-127.
Lim, A., Rodrigues, B., Xiao, F., & Zhu, Y. (2004). Crane scheduling with spatial constraints. Naval Research Logistics (NRL), 51(3), 386-406.
Lim, S. J., Jeong, S. J., Kim, K. S., & Park, M. W. (2006). A simulation approach for production-distribution planning with consideration given to replenishment policies. The International Journal of Advanced Manufacturing Technology, 27(5), 593-603.
López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43-58.
Lu, Z., Han, X., Xi, L., & Erera, A. L. (2012). A heuristic for the quay crane scheduling problem based on contiguous bay crane operations. Computers & Operations Research, 39(12), 2915-2928.
Meisel, F., & Bierwirth, C. (2011). A unified approach for the evaluation of quay crane scheduling models and algorithms. Computers & Operations Research, 38(3), 683-693.
Meisel, F. (2009). Seaside operations planning in container terminals. Berlin, Heidelberg: Physica-Verlag.
Michael, P. (1995). Scheduling, theory, algorithms, and systems. Englewood Cli s, New Jersey.
Moccia, L., Cordeau, J. F., Gaudioso, M., & Laporte, G. (2006). A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Naval Research Logistics (NRL), 53(1), 45-59.
Monaco, M. F., & Sammarra, M. (2011). Quay crane scheduling with time windows, one-way and spatial constraints. International Journal of Shipping and Transport Logistics, 3(4), 454-474.
Multimethod Simulation Software and Solutions, accessed on, Nov. 22, 2015. [Online]. Available: http://www.anylogic.com/
Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2013). Hybrid evolutionary computation methods for quay crane scheduling problems. Computers & Operations Research, 40(8), 2083-2093.
Peterkofsky, R. I., & Daganzo, C. F. (1990). A branch and bound solution method for the crane scheduling problem. Transportation Research Part B: Methodological, 24(3), 159-172.
Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational Research, 155(2), 426-438.
Rouky, N., Boukachour, J., Alaoui, A.E.H, El Khoukhi, F., & Boudebous D. (2015). Un algorithme d’optimisation par colonie de fourmis pour l’ordonnancement des grues de quai. JD-JN- MACS, Bourges, France.
Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers & Chemical Engineering, 28(6), 971-983.
Sammarra, M., Cordeau, J. F., Laporte, G., & Monaco, M. F. (2007). A tabu search heuristic for the quay crane scheduling problem. Journal of Scheduling, 10(4), 327-336.
Steenken, D., Winter, T., & Zimmermann, U. T. (2001). Stowage and transport optimization in ship planning. In Online optimization of large scale systems (pp. 731-745). Springer Berlin Heidelberg.
Thiruvady, D., Ernst, A. T., & Singh, G. (2016). Parallel ant colony optimization for resource constrained job scheduling. Annals of Operations Research, 242(2), 355-372.
Tongzon, J., & Heng, W. (2005). Port privatization, efficiency and competitiveness: Some empirical evidence from container ports (terminals). Transportation Research Part A: Policy and Practice, 39(5), 405-424.
Tréfond, S., Billionnet, A., Elloumi, S., Djellab, H., & Guyon, O. (2017). Optimization and simulation for robust railway rolling-stock planning. Journal of Rail Transport Planning & Management, 7(1-2), 33-49.
UNCTAD, WID. (2014). United nations conference on trade and development. Review of Maritime Transport.
UNCTAD, WID. (2016). United nations conference on trade and development. Review of Maritime Transport.
Unsal, O., & Oguz, C. (2013). Constraint programming approach to quay crane scheduling problem. Transportation Research Part E: Logistics and Transportation Review, 59, 108-122.
Wang, Y., & Kim, K. H. (2011). A quay crane scheduling algorithm considering the workload of yard cranes in a container yard. Journal of Intelligent Manufacturing, 22(3), 459-470..
Zhou, Y., Wang, W., Song, X., & Guo, Z. (2016). Simulation-based optimization for yard design at mega container terminal under uncertainty. Mathematical Problems in Engineering, Vol. 2016.
Zhu, Y., & Lim, A. (2006). Crane scheduling with non-crossing constraint. Journal of the Operational Research Society, 57(12), 1464-1471.