How to cite this paper
Lee, T & Loong, Y. (2019). A review of scheduling problem and resolution methods in flexible flow shop.International Journal of Industrial Engineering Computations , 10(1), 67-88.
Refrences
Acero-Domínguez, M. J., & Paternina-Arboleda, C. D. (2004, April). Scheduling jobs on a k-stage flexible flow shop using a TOC-based (bottleneck) procedure. Paper presented at the Proceedings of the 2004 Systems and Information Engineering Design Symposium, Charlottesville, VA, USA. doi:10.1109/SIEDS.2004.239977
Ahonen, H. & de Alvarenga, A. G. (2016). Scheduling flexible flow shop with recirculation and machine sequence dependent processing times: formulation ans solution procedures. International Journal of Advance Manufacturing Technology, 89(1-4), 765-777. doi:10.1007/s00170-016-9093-3
Akkerman, R., Van Donk, D. P., & Gaalman, G. (2007). Influence ofcapacity- and time-constrained intermediate storage in two-stage food production systems. International Journal of Production Research, 43(13), 2955-2973. doi:10.1080/00207540600806463
Akrami, B., Karimi, B., & Moattar Hosseini, S. M. (2006). Two metaheuristic methods for the common cycle economic lot sizing and scheduling in flexible flow shops with limited intermediate buffers: The finite horizon case. Applied Mathematics and Computation, 183(1), 634-645. doi:10.1016/j.amc.2006.05.106
Alaykýran, K., Engin, O., & Döyen, A. (2007). Using ant colony optimization to solve hybrid flow shop scheduling problems. International Journal of Advanced Manufacturing Technology, 35(5-6), 541-550. doi:10.1007/s00170-007-1048-2
Alfieri, A. (2009). Workload simulation and optimisation in multi-criteria hybrid flowshop scheduling: A case study. International Journal of Production Research, 47(18), 5129-5145. doi:10.1080/00207540802010823
Alisantoso, D., Khoo, L. P., & Jiang, P. Y. (2003). An immune algorithm approach to the scheduling of a flexible PCB flow shop. International Journal of Advanced Manufacturing Technology, 22(11-12), 819-827. doi:10.1007/s00170-002-1498-5
Allaoui, H., & Artiba, A. (2004). Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints. Computers & Industrial Engineering, 47(4), 431-450. doi:10.1016/j.cie.2004.09.002
Allaoui, H., & Artiba, A. (2006). Scheduling two-stage hybrid flow shop with availability constraints. Computers & Operations Research, 33(5), 1399-1419. doi:10.1016/j.cor.2004.09.034
Almeder, C., & Hartl, R. F. (2013). A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer. International Journal of Production Economics, 145(1), 88-95. doi:10.1016/j.ijpe.2012.09.014
Arasanipalai Raghavan, V., Yoon, S. W., & Srihari, K. (2015). Heuristic algorithms to minimize total weighted tardiness with stochastic rework and reprocessing times. Journal of Manufacturing Systems, 37, 233-242. doi:10.1016/j.jmsy.2014.09.004
Azizoğlu, M., Çakmak, E., & Kondakci, S. (2001). A flexible flowshop problem with total flow time minimization. European Journal of Operational Research, 132(3), 528-538. doi:10.1016/S0377-2217(00)00142-9
Babayan, A., & He, D. (2004). Solving the n-job 3-stage flexible flowshop scheduling problem using an agent-based approach. International Journal of Production Research, 42(4), 777-799. doi:10.1080/00207540310001602946
Batur, G. D., Erol, S., & Karasan, O. E. (2016). Robot move sequence determining and multiple part-type scheduling in hybrid flexible flow shop robotic cells. Computers & Industrial Engineering, 100, 72-87. doi:10.1016/j.cie.2016.08.006
Bertel, S., & Billaut, J.-C. (2004). A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation. European Journal of Operational Research, 159(3), 651-662. doi:10.1016/s0377-2217(03)00434-x
Besbes, W., Teghem, J., & Loukil, T. (2009). Scheduling hybrid flow shop problem with non-fixed availability constraints. European Journal of Industrial Engineering, 4(4), 413-433. doi:10.1504/EJIE.2010.035652
Botta-Genoulaz, V. (2000). Hybrid flow shop scheduling with precedence constraints and time lags to minimize maximum lateness. International Journal of Production Economics, 64(1-3), 101-111. doi:10.1016/S0925-5273(99)00048-1
Bożejko, W., Gniewkowski, Ł., Pempera, J., & Wodecki, M. (2014). Cyclic hybrid flow-shop scheduling problem with machine setups. Procedia Computer Science, 29, 2127-2136. doi:10.1016/j.procs.2014.05.197
Caricato, P., Grieco, A., & Serino, D. (2007). Tsp-based scheduling in a batch-wise hybrid flow-shop. Robotics and Computer-Integrated Manufacturing, 23(2), 234-241. doi:10.1016/j.rcim.2005.12.004
Chamnanlor, C., Sethanan, K., Gen, M., & Chien, C.-F. (2015). Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints. Journal of Intelligent Manufacturing, 28(8) 1915-1931. doi:10.1007/s10845-015-1078-9
Chen, C.-L., & Chen, C.-L. (2008). Bottleneck-based heuristics to minimize tardy jobs in a flexible flow line with unrelated parallel machines. International Journal of Production Research, 46(22), 6415-6430. doi:10.1080/00207540701352102
Chen, C.-L., & Chen, C.-L. (2009). Bottleneck-based heuristics to minimize total tardiness for the flexible flow line with unrelated parallel machines. Computers & Industrial Engineering, 56(4), 1393-1401. doi:10.1016/j.cie.2008.08.016
Chen, L., Bostel, N., Dejax, P., Cai, J., & Xi, L. (2006). A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal. European Journal of Operational Research, 181(1), 40-58. doi:10.1016/j.ejor.2006.06.033
Chen, W., Li, J., & Ma, W. (2016). Hybrid flow shop rescheduling algorithm for perishable products subject to a due date with random invalidity to the operational unit. International Journal of Advanced Manufacturing Technology, 93(1-4), 225-239. doi:10.1007/s00170-016-8859-y
Choi, H.-S., & Lee, D.-H. (2009). Scheduling algorithms to minimize the number of tardy jobs in two-stage hybrid flow shops. Computers & Industrial Engineering, 56(1), 113-120. doi:10.1016/j.cie.2008.04.005
Choi, S. H., & Wang, K. (2012). Flexible flow shop scheduling with stochastic processing times: A decomposition-based approach. Computers & Industrial Engineering, 63(2), 362-373. doi:10.1016/j.cie.2012.04.001
Choi, S.-W., Kim, Y.-D., & Lee, G.-C. (2005). Minimizing total tardiness of orders with reentrant lots in a hybrid flowshop. International Journal of Production Research, 43(11), 2149-2167. doi:10.1080/00207540500050071
Costa, A., Cappadonna, F. A., & Fichera, S. (2014). A novel genetic algorithm for the hybrid flow shop scheduling with parallel batching and eligibility constraints. International Journal of Advanced Manufacturing Technology, 75(5-8), 833-847. doi:10.1007/s00170-014-6195-7
Cui, Z., & Gu, X. (2015). An improved discrete artificial bee colony algorithm to minimize the makespan on hybrid flow shop problems. Neurocomputing, 148, 248-259. doi:10.1016/j.neucom.2013.07.056
Ebrahimi, M., Fatemi Ghomi, S. M. T., & Karimi, B. (2014). Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Applied Mathematical Modelling, 38(9-10), 2490-2504. doi:10.1016/j.apm.2013.10.061
Engin, O., & Döyen, A. (2004). A new approach to solve hybrid flow shop scheduling problems by artificial immune system. Future Generation Computer Systems, 20(6), 1083-1095. doi:10.1016/j.future.2004.03.014
Fattahi, P., Hosseini, S. M. H., Jolai, F., & Tavakkoli-Moghaddam, R. (2014). A branch and bound algorithm for hybrid flow shop scheduling problem with setup time and assembly operations. Applied Mathematical Modelling, 38(1), 119-134. doi:10.1016/j.apm.2013.06.005
Figielska, E. (2008). A new heuristic for scheduling the two-stage flowshop with additional resources. Computers & Industrial Engineering, 54(4), 750-763. doi:10.1016/j.cie.2007.10.011
Gerstl, E., & Mosheiov, G. (2013). The optimal number of used machines in a two-stage flexible flowshop scheduling problem. Journal of Scheduling, 17(2), 199-210. doi:10.1007/s10951-013-0343-z
Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2008). Scheduling hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. International Journal of Advanced Manufacturing Technology, 42(1-2), 189-201. doi:10.1007/s00170-008-1577-3
González-Neira, E. M., García-Cáceres, R. G., Caballero-Villalobos, J. P., Molina-Sánchez, L. P., & Montoya-Torres, J. R. (2016). Stochastic flexible flow shop scheduling problem under quantitative and qualitative decision criteria. Computers & Industrial Engineering, 101, 128-144. doi:10.1016/j.cie.2016.08.026
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy, K. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287-326. doi:10.1016/S0167-5060(08)70356-X
Gupta, J. N. D., Krüger, K., Lauff, V., Werner, F., & Sotskov, Y. N. (2002). Heuristics for hybrid flow shops with controllable processing times and assignable due dates. Computers and Operations Research, 29(10), 1417-1439. doi:10.1016/S0305-0548(01)00040-5
Gupta, J. N. D., & Tunc, E. A. (1998). Minimizing tardy jobs in a two-stage hybrid flowshop. International Journal of Production Research, 36(9), 2397-2417. doi:10.1080/002075498192599
Haouari, M., Hidri, L., & Gharbi, A. (2006). Optimal scheduling of a two-stage hybrid flow shop. Mathematical Methods of Operations Research, 64(1), 107-124. doi:10.1007/s00186-006-0066-4
Hong, T.-P., & Wang, T.-T. (2000). Fuzzy flexible flow shops at two machine centers for continuous fuzzy domains. Information Sciences, 129(1-4), 227-237. doi:10.1016/S0020-0255(00)00066-9
Hong, T.-P., Wang, T.-T., & Wang, S.-L. (2001). A palmer-based continuous fuzzy flexible flow-shop scheduling algorithm. Soft Computing, 5(6), 426-433. doi:10.1007/s005000100109
Janiak, A., Kozan, E., Lichtenstein, M., & Oğuz, C. (2007). Metaheuristic approaches to the hybrid flow shop scheduling problem with a cost-related criterion. International Journal of Production Economics, 105(2), 407-424. doi:10.1016/j.ijpe.2004.05.027
Jayamohan, M. S., & Rajendran, C. (2000). A comparative analysis of two different approaches to scheduling in flexible flow shops. Production Planning & Control, 11(6), 572-580. doi:10.1080/095372800414133
Jenabi, M., Fatemi Ghomi, S. M. T., Torabi, S. A., & Karimi, B. (2007). Two hybrid meta-heuristics for the finite horizon ELSP in flexible flow lines with unrelated parallel machines. Applied Mathematics and Computation, 186(1), 230-245. doi:10.1016/j.amc.2006.06.121
Jiang, S., Liu, M., Hao, J., & Qian, W. (2015). A bi-layer optimization approach for a hybrid flow shop scheduling problem involving controllable processing times in the steelmaking industry. Computers & Industrial Engineering, 87, 518-531. doi:10.1016/j.cie.2015.06.002
Jolai, F., Asefi, H., Rabiee, M., & Ramezani, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, 20(3), 861-872. doi:10.1016/j.scient.2012.10.044
Jolai, F., Rabiee, M., & Asefi, H. (2012). A novel hybrid meta-heuristic algorithm for a no-wait flexible flow shop scheduling problem with sequence dependent setup times. International Journal of Production Research, 50(24), 7447-7466. doi:10.1080/00207543.2011.653012
Jones D. F., Mirrazavi, S. K., Tamiz, M. (2002). Multi-objective metaheuristics: An overview of the current state-of-art. European Journal of Operational Research, 137(1), 1-9. doi:10.1016/S0377-2217(01)00123-0
Joo, B. J., Choi, Y. C., & Xirouchakis, P. (2013). Dispatching Rule-based Algorithms for a Dynamic Flexible Flow Shop Scheduling Problem with Time-dependent Process Defect Rate and Quality Feedback. Procedia CIRP, 7, 163-168. doi:10.1016/j.procir.2013.05.028
Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2005). An evaluation of sequencing heuristics for flexible flowshop scheduling problems with unrelated parallel machines and dual criteria. Magdeburg: Otto Von Guericke, Universität Magdeburg Fakultät für Mathematik. Retrieved from http://www.math.uni-magdeburg.de/~werner/preprints/p05-28.pdf
Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2008). Algorithm for flexible flow shop problems with unrelated parallel machines, setup times and dual criteria. International Journal of Advance Manufacturing Technology, 37(3-4), 354-370. doi:10.1007/s00170-007-0977-0
Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2009). A comparison of scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. Computers and Operations Research, 36(2), 358-378. doi:10.1016/j.cor.2007.10.004
Kahraman, C., Engin, O., Kaya, İ., & Öztürk, R. E. (2010). Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach. Applied Soft Computing, 10(4), 1293-1300. doi:10.1016/j.asoc.2010.03.008
Khademi Zare, H., & Fakhrzad, M. B. (2011). Solving flexible flow-shop problem with a hybrid genetic algorithm and data mining: A fuzzy approach. Expert Systems with Applications, 38(6), 7609-7615. doi:10.1016/j.eswa.2010.12.101
Khamseh, A., Jolai, F., & Babaei, M. (2014). Integrating sequence-dependent group scheduling problem and preventive maintenance in flexible flow shops. International Journal of Advanced Manufacturing Technology, 77(1-4), 173-185. doi:10.1007/s00170-014-6429-8
Kianfar, K., Fatemi Ghomi, S. M. T., & Oroojlooy Jadid, A. (2012). Study of stochastic sequence-dependent flexible flow shop via developing a dispatching rule and a hybrid GA. Engineering Applications of Artificial Intelligence, 25(3), 494-506. doi:10.1016/j.engappai.2011.12.004
Kim, Y.-D., Joo, B.-J., & Shin, J.-H. (2007). Heuristics for a two-stage hybrid flowshop scheduling problem with ready times and a product-mix ratio constraint. Journal of Heuristics, 15(1), 19-42. doi:10.1007/s10732-007-9061-z
Korytkowski, P., Wiśniewski, T., & Rymaszewski, S. (2013). An evolutionary simulation-based optimization approach for dispatching scheduling. Simulation Modelling Practice and Theory, 35, 69-85. doi:10.1016/j.simpat.2013.03.006
Koulamas, C., & Kyparisis, G. J. (2007). A note on performance guarantees for sequencing three-stage flexible flowshops with identical machines to minimize makespan. IIE Transactions, 39(5), 559-563. doi:10.1080/07408170600941649
Kurz, M. E., & Askin, R. G. (2001). An adaptable problem-space-based search method for flexible flow line scheduling. IIE Transactions, 33(8), 691-693.doi:10.1023/A:1010943502591
Kurz, M. E., & Askin, R. G. (2003). Comparing scheduling rules for flexible flow lines. International Journal of Production Economics, 85(3), 371-388. doi:10.1016/s0925-5273(03)00123-3
Kurz, M. E., & Askin, R. G. (2004). Scheduling flexible flow lines with sequencedependent setup times. European Journal of Operational Research, 159(1), 66-82. doi:10.1016/S0377-2217(03)00401-6
Kyparisis, G. J., & Koulamas, C. (2006a). A note on makespan minimization in two-stage flexible flow shops with uniform machines. European Journal of Operational Research, 175(2), 1321-1327. doi:10.1016/j.ejor.2005.06.017
Kyparisis, G. J., & Koulamas, C. (2006b). Flexible flow shop scheduling with uniform parallel machines. European Journal of Operational Research, 168(3), 985-997. doi:10.1016/j.ejor.2004.05.017
Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming problems. Econometrica, 28(3), 497-520. doi:10.2307/1910129
Lee, G.-C. (2009). Estimating order lead times in hybrid flowshops with different scheduling rules. Computers & Industrial Engineering, 56(4), 1668-1674. doi:10.1016/j.cie.2008.10.016
Lee, G.-C., & Kim, Y.-D. (2004). A branch-and-bound algorithm for a two-stage hybrid flowshop scheduling problem minimizing total tardiness. International Journal of Production Research, 42(22), 4731-4743. doi:10.1080/0020754041233127044
Li, D., Meng, X., Liang, Q., & Zhao, J. (2014). A heuristic-search genetic algorithm for multi-stage hybrid flow shop scheduling with single processing machines and batch processing machines. Journal of Intelligent Manufacturing, 26(5), 873-890. doi:10.1007/s10845-014-0874-y
Li, J., Pan, Q., & Wang, F. (2014). A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem. Applied Soft Computing, 24, 63-77. doi:10.1016/j.asoc.2014.07.005
Lin, H.-T., & Liao, C.-J. (2003). A case study in a two-stage hybrid flow shop with setup time and dedicated machines. International Journal of Production Economics, 86(2), 133-143. doi:10.1016/s0925-5273(03)00011-2
Lin, S.-W., & Ying, K.-C. (2013). Scheduling a bi-criteria flowshop manufacturing cell with sequence-dependent family setup times. European Journal of Industrial Engineering, Inderscience Enterprises Ltd, 6(4), 474-496. doi:10.1504/EJIE.2012.047666
Liu, C.-Y., & Chang, S.-C. (2000). Scheduling flexible flow shops with sequence-dependent setup effects. IEEE Transactions Robotics and Automation, 16(4), 408-419. doi:10.1109/70.864235
Liu, J. (2008). Single-job lot streaming in m − 1 two-stage hybrid flowshops. European Journal of Operational Research, 187(3), 1171-1183. doi:10.1016/j.ejor.2006.06.066
Logendran, R., Carson, S., & Hanson, E. (2005). Group scheduling in flexible flow shops. International Journal of Production Economics, 96(2), 143-155. doi:10.1016/j.ijpe.2004.03.011
Logendran, R., deSzoeke, P., & Barnard, F. (2006). Sequence-dependent group scheduling problems in flexible flow shops. International Journal of Production Economics, 102(1), 66-86. doi:10.1016/j.ijpe.2005.02.006
Low, C. (2005). Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel machines. Computers & Operations Research, 32(8), 2013-2025. doi:10.1016/j.cor.2004.01.003
Low, C., Hsu, C.-J., & Su, C.-T. (2008). A two-stage hybrid flowshop scheduling problem with a function constraint and unrelated alternative machines. Computers & Operations Research, 35(3), 845-853. doi:10.1016/j.cor.2006.04.004
Lu, M.-S., & Liu, Y.-J. (2010). Dynamic dispatching for a flexible manufacturing system based on fuzzy logic. International Journal of Advanced Manufacturing Technology, 54(9-12), 1057-1065. doi: 10.1007/s00170-010-2993-8
Luo, H., Zhang, A., & Huang, G. Q. (2013). Active scheduling for hybrid flowshop with family setup time and inconsistent family formation. Journal of Intelligent Manufacturing, 26(1), 169-187. doi:10.1007/s10845-013-0771-9
Madhushini, N., & Rajendran, C. (2011). Branch-and-bound algorithms for scheduling in an m-machine permutation flowshop with a single objective and with multiple objectives. European Journal of Industrial Engineering, 5(4), 361-387. doi:10.1504/EJIE.2011.042737
Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing, 19, 93-101. doi:10.1016/j.asoc.2014.02.005
Minella, G., Ruiz, R., & Ciavotta, M. (2008). A review and evaluation of multi-objective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing, 20(3), 451-471. doi:10.1287/ijoc.1070.0258
Morita, H., & Shio, N. (2005). Hybrid branch and bound method with genetic algorithm for flexible flowshop scheduling problem. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 48(1), 46-52. doi:10.1299/jsmec.48.46
Moursli, O., & Pochet, Y. (2000). A branch and bound algorithm for the hybrid flowshop. International Journal of Production Economics, 64(1-3), 113-125. doi:10.1016/S0925-5273(99)00051-1
Naderi, B., Zandieh, M., Khaleghi Ghoshe Balagh, A., & Roshanaei, V. (2009). An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness. Expert Systems with Applications, 36(6), 9625-9633. doi:10.1016/j.eswa.2008.09.063
Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2013). Learning iterative dispatching rules for job shop scheduling with genetic programming. International Journal of Advanced Manufacturing Technology, 67(1-4), 85-100. doi:10.1007/s00170-013-4756-9
Niu, Q., Zhou, T., Fei, M., & Wang, B. (2012). An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems. Mathematics and Computers in Simulation, 84, 1-25. doi:10.1016/j.matcom.2011.02.014
Oğuz, C., & Fikret Ercan, M. (2005). A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. Journal of Scheduling, 8(4), 323-351. doi: 10.1007/s10951-005-1640-y
Oğuz, C., Fikret Ercan, M., Edwin Cheng, T. C., & Fung, Y. F. (2003). Heuristic algorithms for multiprocessor task scheduling in a two-stage hybrid flow-shop. European Journal of Operational Research, 149(2), 390-403. doi:10.1016/s0377-2217(02)00766-x
Oğuz, C., Zinder, Y., Ha Do, V., Janiak, A., & Lichtenstein, M. (2004). Hybrid flow-shop scheduling problems with multiprocessor task systems. European Journal of Operational Research, 152(1), 115-131. doi:10.1016/S0377-2217(02)00644-6
Pinedo, M. (2008). Scheduling: Theory, algorithm, and systems (3rd ed.). New York: Springer.
Pugazhendhi, S., Thiagarajan, S., Rajendran, C., & Anantharaman, N. (2004). Generating non-permutation schedules in flow line based manufacturing systems with sequence-dependent setup times of jobs: A heuristic approach. International Journal of Advance Manufacturing Technology, 23, 64-78. doi:10.1007/s00170-002-1525-6
Qin, W., Zhang, J., & Sun, Y. (2013). Dynamic dispatching for interbay material handling by using modified Hungarian algorithm and fuzzy-logic-based control. International Journal of Advanced Manufacturing Technology, 67(1-4), 295-309. doi:10.1007/s00170-013-4775-6
Quadt, D., & Kuhn, H. (2005a). Batch scheduling of jobs with identical process times on flexible flowlines. International Journal of Production Economics, 105(2), 385-401. doi:10.1016/j.ijpe.2004.04.013
Quadt, D., & Kuhn, H. (2005b). Conceptual framework for lot-sizing and scheduling of flexible flow lines. International Journal of Production Research, 43(11), 2291-2308. doi:10.1080/00207540500066762
Pan, Q.-K., & Wang, L. (2008). A novel differential evolution algorithm for no-idle permutation flow-shop scheduling problems. European Journal of Industrial Engineering, 2(3), 279-297. doi:10.1504/EJIE.2008.017687
Rahmani, D., & Ramezanian, R. (2016). A stable reactive approach in dynamic flexible flow shop scheduling with unexpected disruptions: A case study. Computers & Industrial Engineering, 98, 360-372. doi:10.1016/j.cie.2016.06.018
Rajendran, C., & Holthaus, O. (1997). A comparative study of dispatching rules in dynamic flow shops and job shops. European Journal of Operational Research, 116(1), 156-170. doi:10.1016/S0377-2217(98)00023-X
Ramezani, P., Rabiee, M., & Jolai, F. (2013). No-wait flexible flowshop with uniform parallel machines and sequence-dependent setup time: A hybrid meta-heuristic approach. Journal of Intelligent Manufacturing, 26(4), 731-744. doi:10.1007/s10845-013-0830-2
Ramezanian, R., Fallah Sanami, S., & Shafiei Nikabadi, M. (2016). A simultaneous planning of production and scheduling operations in flexible flow shops: Case study of tile industry. International Journal of Advanced Manufacturing Technology, 88(9-12), 2389-2403. doi:10.1007/s00170-016-8955-z
Riane, F., Artiba, A., & Elmaghraby, S. E. (2002). Sequencing a hybrid two-stage flowshop with dedicated machines. International Journal of Production Research, 40(17), 4353-4380. doi:10.1080/00207540210159536
Ribas, I., & Companys, R. (2015). Efficient heuristic algorithms for the blocking flow shop scheduling problem with total flow time minimization. Computers & Industrial Engineering, 87, 30-39. doi:10.1016/j.cie.2015.04.013
Ribas, I., Companys, R., & Tort-Martorell, X. (2013). A competitive variable neighbourhood search algorithm for the blocking flow shop problem. European Journal of Industrial Engineering, 7(6), 729-754. doi:10.1504/EJIE.2013.058392
Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8), 1439-1454. doi:10.1016/j.cor.2009.11.001
Rodriguez, J. A. V., & Salhi, A. (2005, September). Performance of single stage representation genetic algorithms in scheduling flexible flow shops. Paper presented at the The 2005 IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, UK. doi:10.1109/CEC.2005.1554849
Ruiz, R., & Maroto, C. (2001). A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. European Journal of Operational Research, 169(3), 781-800. doi:10.1016/j.ejor.2004.06.038
Ruiz R, & Stützle, T. (2008). An iterated greedy heuristic for the sequence dependent setup times flow shop with makespan and weighted tardiness objectives. European Journal of Operational Research, 187(3), 1143-1159. doi:10.1016/j.ejor.2006.07.029
Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151-1175. doi:10.1016/j.cor.2006.07.014
Ruiz, R., & Vázquenz-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1-18. doi:10.1016/j.ejor.2009.09.024
Samarghandi, H., & ElMekkawy, T. Y. (2011). An efficient hybrid algorithm for the two-machine no-wait flow shop problem with separable setup times and single server. European Journal of Industrial Engineering, 5(2), 111-131. doi:10.1504/EJIE.2011.039869
Sawik, T. (2005). Integer programming approach to production scheduling for make-to-order manufacturing. Mathematical and Computer Modelling, 41(1), 99-118. doi:10.1016/j.mcm.2003.10.053
Sawik, T. (2006). Hierarchical approach to production scheduling in make-to-order assembly. International Journal of Production Research, 44(4), 801-830. doi:10.1080/00207540500340969
Sawik, T. (2007). A lexicographic approach to bi-objective scheduling of single-period orders in make-to-order manufacturing. European Journal of Operational Research, 180(3), 1060-1075. doi:10.1016/j.ejor.2006.05.023
Şerifoğlu, F. S., & Ulusoy, G. (2004). Multiprocessor task scheduling in multistage hybrid flow-shops: A genetic algorithm approach. Journal of the Operational Research Society, 55(5), 504-512. doi:10.1016/j.asoc.2010.03.008
Shiau, D.-F., Cheng, S.-C., & Huang, Y.-M. (2008). Proportionate flexible flow shop scheduling via a hybrid constructive genetic algorithm. Expert Systems with Applications, 34(2), 1133-1143. doi:10.1016/j.eswa.2006.12.002
Soewandi, H., & Elmaghraby, S. E. (2001). Sequencing three-stage flexible flowshops with identical machines to minimize makespan. IIE Transactions, 33(11), 985-993. doi:10.1023/A:1010934318497
Soewandi, H., & Elmaghraby, S. E. (2003). Sequencing on two-stage hybrid flowshops with uniform machines to minimize makespan. IIE Transactions, 35(5), 467-477. doi:10.1080/07408170304391
Takaku, K., & Yura, K. (2005). Online scheduling aiming to satisfy due date for flexible flow shops. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 48(1), 21-25. doi:10.1299/jsmec.48.21
Tang, L., & Zhang, Y. (2005). Heuristic combined artificial neural networks to schedule hybrid flowshop with sequence dependent setup times. In J. Wang, X. Liao, Z. Yi (Eds.), Advances in Neural Networks – ISNN 2005. Lecture Notes in Computer Science (Vol. 3496). Berlin, Heidelberg: Springer.
Tang, L., Luh, P. B., Liu, J., & Fang, L. (2002). Steel-making process scheduling using Lagrangian relaxation. International Journal of Production Research, 40, 55-70. doi:10.1080/00207540110073000
Tavakkoli-Moghaddam, R., Safaei, N., & Sassani, F. (2009). A memetic algorithm for the flexible flow line scheduling problem with processor blocking. Computers and Operations Research, 36(2), 402-414. doi:10.1016/j.cor.2007.10.011
Thornton, H. W., & Hunsucker, J. L. (2004). A new heuristic for minimal makespan in flow shops with multiple processors and no intermediate storage. European Journal of Operational Research, 152(1), 96-114. doi:10.1016/S0377-2217(02)00524-6
T'kindt, V., & Billaut, J.-C. (2006). Multicriteria scheduling: Theory, models and algorithm. Berlin: Springer.
Torabi, S. A., Fatemi Ghomi, S. M. T., & Karimi, B. (2006). A hybrid genetic algorithm for the finite horizon economic lot and delivery scheduling in supply chains. European Journal of Operational Research, 173(1), 173-189. doi:10.1016/j.ejor.2004.11.012
Tseng, C.-T., & Liao, C.-J. (2008). A particle swarm optimization algorithm for hybrid flowshop scheduling with multiprocessor tasks. International Journal of Production Research, 46(17), 4655-4670. doi:10.1080/00207540701294627
Voß, S., & Witt, A. (2007). Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application. International Journal of Production Economics, 105(2), 445-458. doi:10.1016/j.ijpe.2004.05.029
Wang, H. (2005). Flexible flow shop scheduling: Optimum, heuristics and artificial intelligence solutions. Expert Systems, 22(2), 78-85. doi:10.1111/j.1468-0394.2005.00297.x
Wang, K., & Choi, S. H. (2012). A decomposition-based approach to flexible flow shop scheduling under machine breakdown. International Journal of Production Research, 50(1), 215-234. doi:10.1080/00207543.2011.571456
Wang, K., & Choi, S. H. (2014). A holonic approach to flexible flow shop scheduling under stochastic processing times. Computers & Operations Research, 43, 157-168. doi:10.1016/j.cor.2013.09.013
Wang, L., Xu, Y., Zhou, G., Wang, S., & Liu, M. (2011). A novel decoding method for the hybrid flow-shop scheduling problem with multiprocessor tasks. The International Journal of Advanced Manufacturing Technology, 59(9-12), 1113-1125. doi:10.1007/s00170-011-3541-x
Wang, X., & Tang, L. (2009). A tabu search heuristic for the hybrid flowshop scheduling with finite intermediate buffers. Computers and Operations Research, 36(3), 907-918. doi:10.1016/j.cor.2007.11.004
Wardono, B., & Fathi, Y. (2004). A tabu search algorithm for the multi-stage parallel machine problem with limited buffer capacities. European Journal of Operational Research, 155(2), 380-401. doi:10.1016/S0377-2217(02)00873-1
Wu, Y., Liu, M., & Wu, C. (2003, November). A genetic algorithm for solving flow shop scheduling problems with parallel machines and special procedure constraints. Paper presented at the Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi'an, China. doi:10.1109/ICMLC.2003.1259784
Xuan, H., & Tang, L. (2007). Scheduling a hybrid flowshop with batch production at the last stage. Computers & Operations Research, 34(9), 2718-2733. doi:10.1016/j.cor.2005.10.014
Yang, T., Kuo, Y., & Chang, I. (2004). Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors — a case study. International Journal of Production Research, 42(19), 4015-4030. doi:10.1080/00207540410001699381
Yang, T., Kuo, Y., & Cho, C. (2007). A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem. European Journal of Operational Research, 176(3), 1859-1873. doi:10.1016/j.ejor.2005.10.048
Yaurima, V., Burtseva, L., & Tchernykh, A. (2009). Hybrid flowshop with unrelated machines, sequence-dependent setup time, availability constraints and limited buffers. Computers and Industrial Engineering, 56(4), 1452-1463. doi:10.1016/j.cie.2008.09.004
Ye, H., Li, W., & Miao, E. (2016). An effective heuristic for no-wait flow shop production to minimize makespan. Journal of Manufacturing Systems, 40, 2-7. doi:10.1016/j.jmsy.2016.05.001
Ying, K.-C. (2009). An iterated greedy heuristic for multistage hybrid flowshop scheduling problems with multiprocessor tasks. Journal of the Operational Research Society, 60(6), 810-817. doi:10.1057/palgrave.jors.2602625
Ying, K.-C., & Lin, S.-W. (2006). Multiprocessor task scheduling in multistage hybrid flowshops: an ant colony system approach. International Journal of Production Research, 44(16), 3161-3177. doi:10.1080/00207540500536939
Yu, A. J., & Seif, J. (2016). Minimizing tardiness and maintenance costs in flow shop scheduling by a lower-bound-based GA. Computers & Industrial Engineering, 97, 26-40. doi:10.1016/j.cie.2016.03.024
Zandieh, M., & Gholami, M. (2009). An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. International Journal of Production Research, 47(24), 6999-7027. doi:10.1080/00207540802400636
Zhang, W., Yin, C., Liu, J., & Linn, R. J. (2005). Multi-job lot streaming to minimize the mean completion time in m-1 hybrid flowshops. International Journal of Production Economics, 96(2), 189-200. doi:10.1016/j.ijpe.2004.04.005
Ahonen, H. & de Alvarenga, A. G. (2016). Scheduling flexible flow shop with recirculation and machine sequence dependent processing times: formulation ans solution procedures. International Journal of Advance Manufacturing Technology, 89(1-4), 765-777. doi:10.1007/s00170-016-9093-3
Akkerman, R., Van Donk, D. P., & Gaalman, G. (2007). Influence ofcapacity- and time-constrained intermediate storage in two-stage food production systems. International Journal of Production Research, 43(13), 2955-2973. doi:10.1080/00207540600806463
Akrami, B., Karimi, B., & Moattar Hosseini, S. M. (2006). Two metaheuristic methods for the common cycle economic lot sizing and scheduling in flexible flow shops with limited intermediate buffers: The finite horizon case. Applied Mathematics and Computation, 183(1), 634-645. doi:10.1016/j.amc.2006.05.106
Alaykýran, K., Engin, O., & Döyen, A. (2007). Using ant colony optimization to solve hybrid flow shop scheduling problems. International Journal of Advanced Manufacturing Technology, 35(5-6), 541-550. doi:10.1007/s00170-007-1048-2
Alfieri, A. (2009). Workload simulation and optimisation in multi-criteria hybrid flowshop scheduling: A case study. International Journal of Production Research, 47(18), 5129-5145. doi:10.1080/00207540802010823
Alisantoso, D., Khoo, L. P., & Jiang, P. Y. (2003). An immune algorithm approach to the scheduling of a flexible PCB flow shop. International Journal of Advanced Manufacturing Technology, 22(11-12), 819-827. doi:10.1007/s00170-002-1498-5
Allaoui, H., & Artiba, A. (2004). Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints. Computers & Industrial Engineering, 47(4), 431-450. doi:10.1016/j.cie.2004.09.002
Allaoui, H., & Artiba, A. (2006). Scheduling two-stage hybrid flow shop with availability constraints. Computers & Operations Research, 33(5), 1399-1419. doi:10.1016/j.cor.2004.09.034
Almeder, C., & Hartl, R. F. (2013). A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer. International Journal of Production Economics, 145(1), 88-95. doi:10.1016/j.ijpe.2012.09.014
Arasanipalai Raghavan, V., Yoon, S. W., & Srihari, K. (2015). Heuristic algorithms to minimize total weighted tardiness with stochastic rework and reprocessing times. Journal of Manufacturing Systems, 37, 233-242. doi:10.1016/j.jmsy.2014.09.004
Azizoğlu, M., Çakmak, E., & Kondakci, S. (2001). A flexible flowshop problem with total flow time minimization. European Journal of Operational Research, 132(3), 528-538. doi:10.1016/S0377-2217(00)00142-9
Babayan, A., & He, D. (2004). Solving the n-job 3-stage flexible flowshop scheduling problem using an agent-based approach. International Journal of Production Research, 42(4), 777-799. doi:10.1080/00207540310001602946
Batur, G. D., Erol, S., & Karasan, O. E. (2016). Robot move sequence determining and multiple part-type scheduling in hybrid flexible flow shop robotic cells. Computers & Industrial Engineering, 100, 72-87. doi:10.1016/j.cie.2016.08.006
Bertel, S., & Billaut, J.-C. (2004). A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with recirculation. European Journal of Operational Research, 159(3), 651-662. doi:10.1016/s0377-2217(03)00434-x
Besbes, W., Teghem, J., & Loukil, T. (2009). Scheduling hybrid flow shop problem with non-fixed availability constraints. European Journal of Industrial Engineering, 4(4), 413-433. doi:10.1504/EJIE.2010.035652
Botta-Genoulaz, V. (2000). Hybrid flow shop scheduling with precedence constraints and time lags to minimize maximum lateness. International Journal of Production Economics, 64(1-3), 101-111. doi:10.1016/S0925-5273(99)00048-1
Bożejko, W., Gniewkowski, Ł., Pempera, J., & Wodecki, M. (2014). Cyclic hybrid flow-shop scheduling problem with machine setups. Procedia Computer Science, 29, 2127-2136. doi:10.1016/j.procs.2014.05.197
Caricato, P., Grieco, A., & Serino, D. (2007). Tsp-based scheduling in a batch-wise hybrid flow-shop. Robotics and Computer-Integrated Manufacturing, 23(2), 234-241. doi:10.1016/j.rcim.2005.12.004
Chamnanlor, C., Sethanan, K., Gen, M., & Chien, C.-F. (2015). Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints. Journal of Intelligent Manufacturing, 28(8) 1915-1931. doi:10.1007/s10845-015-1078-9
Chen, C.-L., & Chen, C.-L. (2008). Bottleneck-based heuristics to minimize tardy jobs in a flexible flow line with unrelated parallel machines. International Journal of Production Research, 46(22), 6415-6430. doi:10.1080/00207540701352102
Chen, C.-L., & Chen, C.-L. (2009). Bottleneck-based heuristics to minimize total tardiness for the flexible flow line with unrelated parallel machines. Computers & Industrial Engineering, 56(4), 1393-1401. doi:10.1016/j.cie.2008.08.016
Chen, L., Bostel, N., Dejax, P., Cai, J., & Xi, L. (2006). A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal. European Journal of Operational Research, 181(1), 40-58. doi:10.1016/j.ejor.2006.06.033
Chen, W., Li, J., & Ma, W. (2016). Hybrid flow shop rescheduling algorithm for perishable products subject to a due date with random invalidity to the operational unit. International Journal of Advanced Manufacturing Technology, 93(1-4), 225-239. doi:10.1007/s00170-016-8859-y
Choi, H.-S., & Lee, D.-H. (2009). Scheduling algorithms to minimize the number of tardy jobs in two-stage hybrid flow shops. Computers & Industrial Engineering, 56(1), 113-120. doi:10.1016/j.cie.2008.04.005
Choi, S. H., & Wang, K. (2012). Flexible flow shop scheduling with stochastic processing times: A decomposition-based approach. Computers & Industrial Engineering, 63(2), 362-373. doi:10.1016/j.cie.2012.04.001
Choi, S.-W., Kim, Y.-D., & Lee, G.-C. (2005). Minimizing total tardiness of orders with reentrant lots in a hybrid flowshop. International Journal of Production Research, 43(11), 2149-2167. doi:10.1080/00207540500050071
Costa, A., Cappadonna, F. A., & Fichera, S. (2014). A novel genetic algorithm for the hybrid flow shop scheduling with parallel batching and eligibility constraints. International Journal of Advanced Manufacturing Technology, 75(5-8), 833-847. doi:10.1007/s00170-014-6195-7
Cui, Z., & Gu, X. (2015). An improved discrete artificial bee colony algorithm to minimize the makespan on hybrid flow shop problems. Neurocomputing, 148, 248-259. doi:10.1016/j.neucom.2013.07.056
Ebrahimi, M., Fatemi Ghomi, S. M. T., & Karimi, B. (2014). Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Applied Mathematical Modelling, 38(9-10), 2490-2504. doi:10.1016/j.apm.2013.10.061
Engin, O., & Döyen, A. (2004). A new approach to solve hybrid flow shop scheduling problems by artificial immune system. Future Generation Computer Systems, 20(6), 1083-1095. doi:10.1016/j.future.2004.03.014
Fattahi, P., Hosseini, S. M. H., Jolai, F., & Tavakkoli-Moghaddam, R. (2014). A branch and bound algorithm for hybrid flow shop scheduling problem with setup time and assembly operations. Applied Mathematical Modelling, 38(1), 119-134. doi:10.1016/j.apm.2013.06.005
Figielska, E. (2008). A new heuristic for scheduling the two-stage flowshop with additional resources. Computers & Industrial Engineering, 54(4), 750-763. doi:10.1016/j.cie.2007.10.011
Gerstl, E., & Mosheiov, G. (2013). The optimal number of used machines in a two-stage flexible flowshop scheduling problem. Journal of Scheduling, 17(2), 199-210. doi:10.1007/s10951-013-0343-z
Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2008). Scheduling hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. International Journal of Advanced Manufacturing Technology, 42(1-2), 189-201. doi:10.1007/s00170-008-1577-3
González-Neira, E. M., García-Cáceres, R. G., Caballero-Villalobos, J. P., Molina-Sánchez, L. P., & Montoya-Torres, J. R. (2016). Stochastic flexible flow shop scheduling problem under quantitative and qualitative decision criteria. Computers & Industrial Engineering, 101, 128-144. doi:10.1016/j.cie.2016.08.026
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy, K. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287-326. doi:10.1016/S0167-5060(08)70356-X
Gupta, J. N. D., Krüger, K., Lauff, V., Werner, F., & Sotskov, Y. N. (2002). Heuristics for hybrid flow shops with controllable processing times and assignable due dates. Computers and Operations Research, 29(10), 1417-1439. doi:10.1016/S0305-0548(01)00040-5
Gupta, J. N. D., & Tunc, E. A. (1998). Minimizing tardy jobs in a two-stage hybrid flowshop. International Journal of Production Research, 36(9), 2397-2417. doi:10.1080/002075498192599
Haouari, M., Hidri, L., & Gharbi, A. (2006). Optimal scheduling of a two-stage hybrid flow shop. Mathematical Methods of Operations Research, 64(1), 107-124. doi:10.1007/s00186-006-0066-4
Hong, T.-P., & Wang, T.-T. (2000). Fuzzy flexible flow shops at two machine centers for continuous fuzzy domains. Information Sciences, 129(1-4), 227-237. doi:10.1016/S0020-0255(00)00066-9
Hong, T.-P., Wang, T.-T., & Wang, S.-L. (2001). A palmer-based continuous fuzzy flexible flow-shop scheduling algorithm. Soft Computing, 5(6), 426-433. doi:10.1007/s005000100109
Janiak, A., Kozan, E., Lichtenstein, M., & Oğuz, C. (2007). Metaheuristic approaches to the hybrid flow shop scheduling problem with a cost-related criterion. International Journal of Production Economics, 105(2), 407-424. doi:10.1016/j.ijpe.2004.05.027
Jayamohan, M. S., & Rajendran, C. (2000). A comparative analysis of two different approaches to scheduling in flexible flow shops. Production Planning & Control, 11(6), 572-580. doi:10.1080/095372800414133
Jenabi, M., Fatemi Ghomi, S. M. T., Torabi, S. A., & Karimi, B. (2007). Two hybrid meta-heuristics for the finite horizon ELSP in flexible flow lines with unrelated parallel machines. Applied Mathematics and Computation, 186(1), 230-245. doi:10.1016/j.amc.2006.06.121
Jiang, S., Liu, M., Hao, J., & Qian, W. (2015). A bi-layer optimization approach for a hybrid flow shop scheduling problem involving controllable processing times in the steelmaking industry. Computers & Industrial Engineering, 87, 518-531. doi:10.1016/j.cie.2015.06.002
Jolai, F., Asefi, H., Rabiee, M., & Ramezani, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica, 20(3), 861-872. doi:10.1016/j.scient.2012.10.044
Jolai, F., Rabiee, M., & Asefi, H. (2012). A novel hybrid meta-heuristic algorithm for a no-wait flexible flow shop scheduling problem with sequence dependent setup times. International Journal of Production Research, 50(24), 7447-7466. doi:10.1080/00207543.2011.653012
Jones D. F., Mirrazavi, S. K., Tamiz, M. (2002). Multi-objective metaheuristics: An overview of the current state-of-art. European Journal of Operational Research, 137(1), 1-9. doi:10.1016/S0377-2217(01)00123-0
Joo, B. J., Choi, Y. C., & Xirouchakis, P. (2013). Dispatching Rule-based Algorithms for a Dynamic Flexible Flow Shop Scheduling Problem with Time-dependent Process Defect Rate and Quality Feedback. Procedia CIRP, 7, 163-168. doi:10.1016/j.procir.2013.05.028
Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2005). An evaluation of sequencing heuristics for flexible flowshop scheduling problems with unrelated parallel machines and dual criteria. Magdeburg: Otto Von Guericke, Universität Magdeburg Fakultät für Mathematik. Retrieved from http://www.math.uni-magdeburg.de/~werner/preprints/p05-28.pdf
Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2008). Algorithm for flexible flow shop problems with unrelated parallel machines, setup times and dual criteria. International Journal of Advance Manufacturing Technology, 37(3-4), 354-370. doi:10.1007/s00170-007-0977-0
Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., & Werner, F. (2009). A comparison of scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. Computers and Operations Research, 36(2), 358-378. doi:10.1016/j.cor.2007.10.004
Kahraman, C., Engin, O., Kaya, İ., & Öztürk, R. E. (2010). Multiprocessor task scheduling in multistage hybrid flow-shops: A parallel greedy algorithm approach. Applied Soft Computing, 10(4), 1293-1300. doi:10.1016/j.asoc.2010.03.008
Khademi Zare, H., & Fakhrzad, M. B. (2011). Solving flexible flow-shop problem with a hybrid genetic algorithm and data mining: A fuzzy approach. Expert Systems with Applications, 38(6), 7609-7615. doi:10.1016/j.eswa.2010.12.101
Khamseh, A., Jolai, F., & Babaei, M. (2014). Integrating sequence-dependent group scheduling problem and preventive maintenance in flexible flow shops. International Journal of Advanced Manufacturing Technology, 77(1-4), 173-185. doi:10.1007/s00170-014-6429-8
Kianfar, K., Fatemi Ghomi, S. M. T., & Oroojlooy Jadid, A. (2012). Study of stochastic sequence-dependent flexible flow shop via developing a dispatching rule and a hybrid GA. Engineering Applications of Artificial Intelligence, 25(3), 494-506. doi:10.1016/j.engappai.2011.12.004
Kim, Y.-D., Joo, B.-J., & Shin, J.-H. (2007). Heuristics for a two-stage hybrid flowshop scheduling problem with ready times and a product-mix ratio constraint. Journal of Heuristics, 15(1), 19-42. doi:10.1007/s10732-007-9061-z
Korytkowski, P., Wiśniewski, T., & Rymaszewski, S. (2013). An evolutionary simulation-based optimization approach for dispatching scheduling. Simulation Modelling Practice and Theory, 35, 69-85. doi:10.1016/j.simpat.2013.03.006
Koulamas, C., & Kyparisis, G. J. (2007). A note on performance guarantees for sequencing three-stage flexible flowshops with identical machines to minimize makespan. IIE Transactions, 39(5), 559-563. doi:10.1080/07408170600941649
Kurz, M. E., & Askin, R. G. (2001). An adaptable problem-space-based search method for flexible flow line scheduling. IIE Transactions, 33(8), 691-693.doi:10.1023/A:1010943502591
Kurz, M. E., & Askin, R. G. (2003). Comparing scheduling rules for flexible flow lines. International Journal of Production Economics, 85(3), 371-388. doi:10.1016/s0925-5273(03)00123-3
Kurz, M. E., & Askin, R. G. (2004). Scheduling flexible flow lines with sequencedependent setup times. European Journal of Operational Research, 159(1), 66-82. doi:10.1016/S0377-2217(03)00401-6
Kyparisis, G. J., & Koulamas, C. (2006a). A note on makespan minimization in two-stage flexible flow shops with uniform machines. European Journal of Operational Research, 175(2), 1321-1327. doi:10.1016/j.ejor.2005.06.017
Kyparisis, G. J., & Koulamas, C. (2006b). Flexible flow shop scheduling with uniform parallel machines. European Journal of Operational Research, 168(3), 985-997. doi:10.1016/j.ejor.2004.05.017
Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming problems. Econometrica, 28(3), 497-520. doi:10.2307/1910129
Lee, G.-C. (2009). Estimating order lead times in hybrid flowshops with different scheduling rules. Computers & Industrial Engineering, 56(4), 1668-1674. doi:10.1016/j.cie.2008.10.016
Lee, G.-C., & Kim, Y.-D. (2004). A branch-and-bound algorithm for a two-stage hybrid flowshop scheduling problem minimizing total tardiness. International Journal of Production Research, 42(22), 4731-4743. doi:10.1080/0020754041233127044
Li, D., Meng, X., Liang, Q., & Zhao, J. (2014). A heuristic-search genetic algorithm for multi-stage hybrid flow shop scheduling with single processing machines and batch processing machines. Journal of Intelligent Manufacturing, 26(5), 873-890. doi:10.1007/s10845-014-0874-y
Li, J., Pan, Q., & Wang, F. (2014). A hybrid variable neighborhood search for solving the hybrid flow shop scheduling problem. Applied Soft Computing, 24, 63-77. doi:10.1016/j.asoc.2014.07.005
Lin, H.-T., & Liao, C.-J. (2003). A case study in a two-stage hybrid flow shop with setup time and dedicated machines. International Journal of Production Economics, 86(2), 133-143. doi:10.1016/s0925-5273(03)00011-2
Lin, S.-W., & Ying, K.-C. (2013). Scheduling a bi-criteria flowshop manufacturing cell with sequence-dependent family setup times. European Journal of Industrial Engineering, Inderscience Enterprises Ltd, 6(4), 474-496. doi:10.1504/EJIE.2012.047666
Liu, C.-Y., & Chang, S.-C. (2000). Scheduling flexible flow shops with sequence-dependent setup effects. IEEE Transactions Robotics and Automation, 16(4), 408-419. doi:10.1109/70.864235
Liu, J. (2008). Single-job lot streaming in m − 1 two-stage hybrid flowshops. European Journal of Operational Research, 187(3), 1171-1183. doi:10.1016/j.ejor.2006.06.066
Logendran, R., Carson, S., & Hanson, E. (2005). Group scheduling in flexible flow shops. International Journal of Production Economics, 96(2), 143-155. doi:10.1016/j.ijpe.2004.03.011
Logendran, R., deSzoeke, P., & Barnard, F. (2006). Sequence-dependent group scheduling problems in flexible flow shops. International Journal of Production Economics, 102(1), 66-86. doi:10.1016/j.ijpe.2005.02.006
Low, C. (2005). Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel machines. Computers & Operations Research, 32(8), 2013-2025. doi:10.1016/j.cor.2004.01.003
Low, C., Hsu, C.-J., & Su, C.-T. (2008). A two-stage hybrid flowshop scheduling problem with a function constraint and unrelated alternative machines. Computers & Operations Research, 35(3), 845-853. doi:10.1016/j.cor.2006.04.004
Lu, M.-S., & Liu, Y.-J. (2010). Dynamic dispatching for a flexible manufacturing system based on fuzzy logic. International Journal of Advanced Manufacturing Technology, 54(9-12), 1057-1065. doi: 10.1007/s00170-010-2993-8
Luo, H., Zhang, A., & Huang, G. Q. (2013). Active scheduling for hybrid flowshop with family setup time and inconsistent family formation. Journal of Intelligent Manufacturing, 26(1), 169-187. doi:10.1007/s10845-013-0771-9
Madhushini, N., & Rajendran, C. (2011). Branch-and-bound algorithms for scheduling in an m-machine permutation flowshop with a single objective and with multiple objectives. European Journal of Industrial Engineering, 5(4), 361-387. doi:10.1504/EJIE.2011.042737
Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied Soft Computing, 19, 93-101. doi:10.1016/j.asoc.2014.02.005
Minella, G., Ruiz, R., & Ciavotta, M. (2008). A review and evaluation of multi-objective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing, 20(3), 451-471. doi:10.1287/ijoc.1070.0258
Morita, H., & Shio, N. (2005). Hybrid branch and bound method with genetic algorithm for flexible flowshop scheduling problem. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 48(1), 46-52. doi:10.1299/jsmec.48.46
Moursli, O., & Pochet, Y. (2000). A branch and bound algorithm for the hybrid flowshop. International Journal of Production Economics, 64(1-3), 113-125. doi:10.1016/S0925-5273(99)00051-1
Naderi, B., Zandieh, M., Khaleghi Ghoshe Balagh, A., & Roshanaei, V. (2009). An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness. Expert Systems with Applications, 36(6), 9625-9633. doi:10.1016/j.eswa.2008.09.063
Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2013). Learning iterative dispatching rules for job shop scheduling with genetic programming. International Journal of Advanced Manufacturing Technology, 67(1-4), 85-100. doi:10.1007/s00170-013-4756-9
Niu, Q., Zhou, T., Fei, M., & Wang, B. (2012). An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems. Mathematics and Computers in Simulation, 84, 1-25. doi:10.1016/j.matcom.2011.02.014
Oğuz, C., & Fikret Ercan, M. (2005). A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. Journal of Scheduling, 8(4), 323-351. doi: 10.1007/s10951-005-1640-y
Oğuz, C., Fikret Ercan, M., Edwin Cheng, T. C., & Fung, Y. F. (2003). Heuristic algorithms for multiprocessor task scheduling in a two-stage hybrid flow-shop. European Journal of Operational Research, 149(2), 390-403. doi:10.1016/s0377-2217(02)00766-x
Oğuz, C., Zinder, Y., Ha Do, V., Janiak, A., & Lichtenstein, M. (2004). Hybrid flow-shop scheduling problems with multiprocessor task systems. European Journal of Operational Research, 152(1), 115-131. doi:10.1016/S0377-2217(02)00644-6
Pinedo, M. (2008). Scheduling: Theory, algorithm, and systems (3rd ed.). New York: Springer.
Pugazhendhi, S., Thiagarajan, S., Rajendran, C., & Anantharaman, N. (2004). Generating non-permutation schedules in flow line based manufacturing systems with sequence-dependent setup times of jobs: A heuristic approach. International Journal of Advance Manufacturing Technology, 23, 64-78. doi:10.1007/s00170-002-1525-6
Qin, W., Zhang, J., & Sun, Y. (2013). Dynamic dispatching for interbay material handling by using modified Hungarian algorithm and fuzzy-logic-based control. International Journal of Advanced Manufacturing Technology, 67(1-4), 295-309. doi:10.1007/s00170-013-4775-6
Quadt, D., & Kuhn, H. (2005a). Batch scheduling of jobs with identical process times on flexible flowlines. International Journal of Production Economics, 105(2), 385-401. doi:10.1016/j.ijpe.2004.04.013
Quadt, D., & Kuhn, H. (2005b). Conceptual framework for lot-sizing and scheduling of flexible flow lines. International Journal of Production Research, 43(11), 2291-2308. doi:10.1080/00207540500066762
Pan, Q.-K., & Wang, L. (2008). A novel differential evolution algorithm for no-idle permutation flow-shop scheduling problems. European Journal of Industrial Engineering, 2(3), 279-297. doi:10.1504/EJIE.2008.017687
Rahmani, D., & Ramezanian, R. (2016). A stable reactive approach in dynamic flexible flow shop scheduling with unexpected disruptions: A case study. Computers & Industrial Engineering, 98, 360-372. doi:10.1016/j.cie.2016.06.018
Rajendran, C., & Holthaus, O. (1997). A comparative study of dispatching rules in dynamic flow shops and job shops. European Journal of Operational Research, 116(1), 156-170. doi:10.1016/S0377-2217(98)00023-X
Ramezani, P., Rabiee, M., & Jolai, F. (2013). No-wait flexible flowshop with uniform parallel machines and sequence-dependent setup time: A hybrid meta-heuristic approach. Journal of Intelligent Manufacturing, 26(4), 731-744. doi:10.1007/s10845-013-0830-2
Ramezanian, R., Fallah Sanami, S., & Shafiei Nikabadi, M. (2016). A simultaneous planning of production and scheduling operations in flexible flow shops: Case study of tile industry. International Journal of Advanced Manufacturing Technology, 88(9-12), 2389-2403. doi:10.1007/s00170-016-8955-z
Riane, F., Artiba, A., & Elmaghraby, S. E. (2002). Sequencing a hybrid two-stage flowshop with dedicated machines. International Journal of Production Research, 40(17), 4353-4380. doi:10.1080/00207540210159536
Ribas, I., & Companys, R. (2015). Efficient heuristic algorithms for the blocking flow shop scheduling problem with total flow time minimization. Computers & Industrial Engineering, 87, 30-39. doi:10.1016/j.cie.2015.04.013
Ribas, I., Companys, R., & Tort-Martorell, X. (2013). A competitive variable neighbourhood search algorithm for the blocking flow shop problem. European Journal of Industrial Engineering, 7(6), 729-754. doi:10.1504/EJIE.2013.058392
Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8), 1439-1454. doi:10.1016/j.cor.2009.11.001
Rodriguez, J. A. V., & Salhi, A. (2005, September). Performance of single stage representation genetic algorithms in scheduling flexible flow shops. Paper presented at the The 2005 IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, UK. doi:10.1109/CEC.2005.1554849
Ruiz, R., & Maroto, C. (2001). A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. European Journal of Operational Research, 169(3), 781-800. doi:10.1016/j.ejor.2004.06.038
Ruiz R, & Stützle, T. (2008). An iterated greedy heuristic for the sequence dependent setup times flow shop with makespan and weighted tardiness objectives. European Journal of Operational Research, 187(3), 1143-1159. doi:10.1016/j.ejor.2006.07.029
Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151-1175. doi:10.1016/j.cor.2006.07.014
Ruiz, R., & Vázquenz-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1-18. doi:10.1016/j.ejor.2009.09.024
Samarghandi, H., & ElMekkawy, T. Y. (2011). An efficient hybrid algorithm for the two-machine no-wait flow shop problem with separable setup times and single server. European Journal of Industrial Engineering, 5(2), 111-131. doi:10.1504/EJIE.2011.039869
Sawik, T. (2005). Integer programming approach to production scheduling for make-to-order manufacturing. Mathematical and Computer Modelling, 41(1), 99-118. doi:10.1016/j.mcm.2003.10.053
Sawik, T. (2006). Hierarchical approach to production scheduling in make-to-order assembly. International Journal of Production Research, 44(4), 801-830. doi:10.1080/00207540500340969
Sawik, T. (2007). A lexicographic approach to bi-objective scheduling of single-period orders in make-to-order manufacturing. European Journal of Operational Research, 180(3), 1060-1075. doi:10.1016/j.ejor.2006.05.023
Şerifoğlu, F. S., & Ulusoy, G. (2004). Multiprocessor task scheduling in multistage hybrid flow-shops: A genetic algorithm approach. Journal of the Operational Research Society, 55(5), 504-512. doi:10.1016/j.asoc.2010.03.008
Shiau, D.-F., Cheng, S.-C., & Huang, Y.-M. (2008). Proportionate flexible flow shop scheduling via a hybrid constructive genetic algorithm. Expert Systems with Applications, 34(2), 1133-1143. doi:10.1016/j.eswa.2006.12.002
Soewandi, H., & Elmaghraby, S. E. (2001). Sequencing three-stage flexible flowshops with identical machines to minimize makespan. IIE Transactions, 33(11), 985-993. doi:10.1023/A:1010934318497
Soewandi, H., & Elmaghraby, S. E. (2003). Sequencing on two-stage hybrid flowshops with uniform machines to minimize makespan. IIE Transactions, 35(5), 467-477. doi:10.1080/07408170304391
Takaku, K., & Yura, K. (2005). Online scheduling aiming to satisfy due date for flexible flow shops. JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 48(1), 21-25. doi:10.1299/jsmec.48.21
Tang, L., & Zhang, Y. (2005). Heuristic combined artificial neural networks to schedule hybrid flowshop with sequence dependent setup times. In J. Wang, X. Liao, Z. Yi (Eds.), Advances in Neural Networks – ISNN 2005. Lecture Notes in Computer Science (Vol. 3496). Berlin, Heidelberg: Springer.
Tang, L., Luh, P. B., Liu, J., & Fang, L. (2002). Steel-making process scheduling using Lagrangian relaxation. International Journal of Production Research, 40, 55-70. doi:10.1080/00207540110073000
Tavakkoli-Moghaddam, R., Safaei, N., & Sassani, F. (2009). A memetic algorithm for the flexible flow line scheduling problem with processor blocking. Computers and Operations Research, 36(2), 402-414. doi:10.1016/j.cor.2007.10.011
Thornton, H. W., & Hunsucker, J. L. (2004). A new heuristic for minimal makespan in flow shops with multiple processors and no intermediate storage. European Journal of Operational Research, 152(1), 96-114. doi:10.1016/S0377-2217(02)00524-6
T'kindt, V., & Billaut, J.-C. (2006). Multicriteria scheduling: Theory, models and algorithm. Berlin: Springer.
Torabi, S. A., Fatemi Ghomi, S. M. T., & Karimi, B. (2006). A hybrid genetic algorithm for the finite horizon economic lot and delivery scheduling in supply chains. European Journal of Operational Research, 173(1), 173-189. doi:10.1016/j.ejor.2004.11.012
Tseng, C.-T., & Liao, C.-J. (2008). A particle swarm optimization algorithm for hybrid flowshop scheduling with multiprocessor tasks. International Journal of Production Research, 46(17), 4655-4670. doi:10.1080/00207540701294627
Voß, S., & Witt, A. (2007). Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application. International Journal of Production Economics, 105(2), 445-458. doi:10.1016/j.ijpe.2004.05.029
Wang, H. (2005). Flexible flow shop scheduling: Optimum, heuristics and artificial intelligence solutions. Expert Systems, 22(2), 78-85. doi:10.1111/j.1468-0394.2005.00297.x
Wang, K., & Choi, S. H. (2012). A decomposition-based approach to flexible flow shop scheduling under machine breakdown. International Journal of Production Research, 50(1), 215-234. doi:10.1080/00207543.2011.571456
Wang, K., & Choi, S. H. (2014). A holonic approach to flexible flow shop scheduling under stochastic processing times. Computers & Operations Research, 43, 157-168. doi:10.1016/j.cor.2013.09.013
Wang, L., Xu, Y., Zhou, G., Wang, S., & Liu, M. (2011). A novel decoding method for the hybrid flow-shop scheduling problem with multiprocessor tasks. The International Journal of Advanced Manufacturing Technology, 59(9-12), 1113-1125. doi:10.1007/s00170-011-3541-x
Wang, X., & Tang, L. (2009). A tabu search heuristic for the hybrid flowshop scheduling with finite intermediate buffers. Computers and Operations Research, 36(3), 907-918. doi:10.1016/j.cor.2007.11.004
Wardono, B., & Fathi, Y. (2004). A tabu search algorithm for the multi-stage parallel machine problem with limited buffer capacities. European Journal of Operational Research, 155(2), 380-401. doi:10.1016/S0377-2217(02)00873-1
Wu, Y., Liu, M., & Wu, C. (2003, November). A genetic algorithm for solving flow shop scheduling problems with parallel machines and special procedure constraints. Paper presented at the Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi'an, China. doi:10.1109/ICMLC.2003.1259784
Xuan, H., & Tang, L. (2007). Scheduling a hybrid flowshop with batch production at the last stage. Computers & Operations Research, 34(9), 2718-2733. doi:10.1016/j.cor.2005.10.014
Yang, T., Kuo, Y., & Chang, I. (2004). Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors — a case study. International Journal of Production Research, 42(19), 4015-4030. doi:10.1080/00207540410001699381
Yang, T., Kuo, Y., & Cho, C. (2007). A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem. European Journal of Operational Research, 176(3), 1859-1873. doi:10.1016/j.ejor.2005.10.048
Yaurima, V., Burtseva, L., & Tchernykh, A. (2009). Hybrid flowshop with unrelated machines, sequence-dependent setup time, availability constraints and limited buffers. Computers and Industrial Engineering, 56(4), 1452-1463. doi:10.1016/j.cie.2008.09.004
Ye, H., Li, W., & Miao, E. (2016). An effective heuristic for no-wait flow shop production to minimize makespan. Journal of Manufacturing Systems, 40, 2-7. doi:10.1016/j.jmsy.2016.05.001
Ying, K.-C. (2009). An iterated greedy heuristic for multistage hybrid flowshop scheduling problems with multiprocessor tasks. Journal of the Operational Research Society, 60(6), 810-817. doi:10.1057/palgrave.jors.2602625
Ying, K.-C., & Lin, S.-W. (2006). Multiprocessor task scheduling in multistage hybrid flowshops: an ant colony system approach. International Journal of Production Research, 44(16), 3161-3177. doi:10.1080/00207540500536939
Yu, A. J., & Seif, J. (2016). Minimizing tardiness and maintenance costs in flow shop scheduling by a lower-bound-based GA. Computers & Industrial Engineering, 97, 26-40. doi:10.1016/j.cie.2016.03.024
Zandieh, M., & Gholami, M. (2009). An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. International Journal of Production Research, 47(24), 6999-7027. doi:10.1080/00207540802400636
Zhang, W., Yin, C., Liu, J., & Linn, R. J. (2005). Multi-job lot streaming to minimize the mean completion time in m-1 hybrid flowshops. International Journal of Production Economics, 96(2), 189-200. doi:10.1016/j.ijpe.2004.04.005