How to cite this paper
Keblouti, O., Boulanouar, L., Azizi, M & Athmane, M. (2017). Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN) coating cermet tools.International Journal of Industrial Engineering Computations , 8(1), 71-84.
Refrences
Aouici, H., Fnides, B., Elbah, M., Benlahmidi, S., Bensouilah, H., & Yallese, M. A. (2016). Surface roughness evaluation of various cutting materials in hard turning of AISI H11. International Journal of Industrial Engineering Computations, 7(2), 339.
Asiltürk, I., & Akkuş, H. (2011). Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement,44(9), 1697-1704.
Aurich, J. C., Eyrisch, T., & Zimmermann, M. (2012). Effect of the coating system on the tool performance when turning heat treated AISI 4140. Procedia CIRP, 1, 214-219.
Azizi, M. W., Belhadi, S., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2012). Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel. Journal of Mechanical Science and Technology, 26(12), 4105-4114.
Berkani, S., Yallese, M., Boulanouar, L., & Mabrouki, T. (2015). Statistical analysis of AISI304 austenitic stainless steel machining using Ti (C, N)/Al2O3/TiN CVD coated carbide tool. International Journal of Industrial Engineering Computations, 6(4), 539-552.
Bouchelaghem, H., Yallese, M. A., Amirat, A., & Belhadi, S. (2007). Wear behaviour of CBN tool when turning hardened AISI D3 steel. Mechanika, 65(3), 57-65.
Bouzid, L., Boutabba, S., Yallese, M. A., Belhadi, S., & Girardin, F. (2014). Simultaneous optimization of surface roughness and material removal rate for turning of X20Cr13 stainless steel. The International Journal of Advanced Manufacturing Technology, 74(5-8), 879-891.
Cakir, M. C., Ensarioglu, C., & Demirayak, I. (2009). Mathematical modeling of surface roughness for evaluating the effects of cutting parameters and coating material. Journal of Materials Processing Technology, 209(1), 102-109.
Chinchanikar, S., & Choudhury, S. K. (2013). Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach. Measurement, 46(4), 1572-1584.
Das, S. R., Dhupal, D., & Kumar, A. (2015). Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool.Measurement, 62, 108-126.
Elbah, M., Yallese, M. A., Aouici, H., Mabrouki, T., & Rigal, J. F. (2013). Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement, 46(9), 3041-3056.
Grzesik, W. (1998). The role of coatings in controlling the cutting process when turning with coated indexable inserts. Journal of Materials Processing Technology, 79(1), 133-143.
Grzesik, W., & Nieslony, P. (2004). Prediction of friction and heat flow in machining incorporating thermophysical properties of the coating–chip interface.Wear, 256(1), 108-117.
Hessainia, Z., Belbah, A., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2013). On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement, 46(5), 1671-1681.
Lin, T. R. (2002). Experimental design and performance analysis of TiN-coated carbide tool in face milling stainless steel. Journal of Materials Processing Technology, 127(1), 1-7.
Myers, R.H., & Montgomery, D.C. (2002). Response surface methodology: process and product optimization using designed experiments. 2nd ed. John Wiley and Sons, Inc.: New York,
Sahoo, A. K., & Sahoo, B. (2012). Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts. Measurement, 45(8), 2153-2165.
Sahoo, A. K., & Sahoo, B. (2013). Performance studies of multilayer hard surface coatings (TiN/TiCN/Al 2 O 3/TiN) of indexable carbide inserts in hard machining: Part-I (An experimental approach). Measurement, 46(8), 2854-2867.
Tebassi, H., Yallese, M., Khettabi, R., Belhadi, S., Meddour, I., & Girardin, F. (2016). Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718. International Journal of Industrial Engineering Computations, 7(1), 111-134.
Yallese, M. A., Chaoui, K., Zeghib, N., Boulanouar, L., & Rigal, J. F. (2009). Hard machining of hardened bearing steel using cubic boron nitride tool. Journal of Materials Processing Technology, 209(2), 1092-1104.
Zahia, H., Athmane, Y., Lakhdar, B., & Tarek, M. (2015). On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. International Journal of Industrial Engineering Computations, 6(2), 267-284.
Zhang, K., Deng, J., Meng, R., Gao, P., & Yue, H. (2015). Effect of nano-scale textures on cutting performance of WC/Co-based Ti 55 Al 45 N coated tools in dry cutting. International Journal of Refractory Metals and Hard Materials, 51, 35-49.
Asiltürk, I., & Akkuş, H. (2011). Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement,44(9), 1697-1704.
Aurich, J. C., Eyrisch, T., & Zimmermann, M. (2012). Effect of the coating system on the tool performance when turning heat treated AISI 4140. Procedia CIRP, 1, 214-219.
Azizi, M. W., Belhadi, S., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2012). Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel. Journal of Mechanical Science and Technology, 26(12), 4105-4114.
Berkani, S., Yallese, M., Boulanouar, L., & Mabrouki, T. (2015). Statistical analysis of AISI304 austenitic stainless steel machining using Ti (C, N)/Al2O3/TiN CVD coated carbide tool. International Journal of Industrial Engineering Computations, 6(4), 539-552.
Bouchelaghem, H., Yallese, M. A., Amirat, A., & Belhadi, S. (2007). Wear behaviour of CBN tool when turning hardened AISI D3 steel. Mechanika, 65(3), 57-65.
Bouzid, L., Boutabba, S., Yallese, M. A., Belhadi, S., & Girardin, F. (2014). Simultaneous optimization of surface roughness and material removal rate for turning of X20Cr13 stainless steel. The International Journal of Advanced Manufacturing Technology, 74(5-8), 879-891.
Cakir, M. C., Ensarioglu, C., & Demirayak, I. (2009). Mathematical modeling of surface roughness for evaluating the effects of cutting parameters and coating material. Journal of Materials Processing Technology, 209(1), 102-109.
Chinchanikar, S., & Choudhury, S. K. (2013). Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach. Measurement, 46(4), 1572-1584.
Das, S. R., Dhupal, D., & Kumar, A. (2015). Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool.Measurement, 62, 108-126.
Elbah, M., Yallese, M. A., Aouici, H., Mabrouki, T., & Rigal, J. F. (2013). Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement, 46(9), 3041-3056.
Grzesik, W. (1998). The role of coatings in controlling the cutting process when turning with coated indexable inserts. Journal of Materials Processing Technology, 79(1), 133-143.
Grzesik, W., & Nieslony, P. (2004). Prediction of friction and heat flow in machining incorporating thermophysical properties of the coating–chip interface.Wear, 256(1), 108-117.
Hessainia, Z., Belbah, A., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2013). On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement, 46(5), 1671-1681.
Lin, T. R. (2002). Experimental design and performance analysis of TiN-coated carbide tool in face milling stainless steel. Journal of Materials Processing Technology, 127(1), 1-7.
Myers, R.H., & Montgomery, D.C. (2002). Response surface methodology: process and product optimization using designed experiments. 2nd ed. John Wiley and Sons, Inc.: New York,
Sahoo, A. K., & Sahoo, B. (2012). Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts. Measurement, 45(8), 2153-2165.
Sahoo, A. K., & Sahoo, B. (2013). Performance studies of multilayer hard surface coatings (TiN/TiCN/Al 2 O 3/TiN) of indexable carbide inserts in hard machining: Part-I (An experimental approach). Measurement, 46(8), 2854-2867.
Tebassi, H., Yallese, M., Khettabi, R., Belhadi, S., Meddour, I., & Girardin, F. (2016). Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718. International Journal of Industrial Engineering Computations, 7(1), 111-134.
Yallese, M. A., Chaoui, K., Zeghib, N., Boulanouar, L., & Rigal, J. F. (2009). Hard machining of hardened bearing steel using cubic boron nitride tool. Journal of Materials Processing Technology, 209(2), 1092-1104.
Zahia, H., Athmane, Y., Lakhdar, B., & Tarek, M. (2015). On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. International Journal of Industrial Engineering Computations, 6(2), 267-284.
Zhang, K., Deng, J., Meng, R., Gao, P., & Yue, H. (2015). Effect of nano-scale textures on cutting performance of WC/Co-based Ti 55 Al 45 N coated tools in dry cutting. International Journal of Refractory Metals and Hard Materials, 51, 35-49.