How to cite this paper
Panda, A., Sahoo, A & Rout, A. (2017). Statistical regression modeling and machinability study of hardened AISI 52100 steel using cemented carbide insert.International Journal of Industrial Engineering Computations , 8(1), 33-44.
Refrences
Azizi, M. W., Belhadi, S., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2012). Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel. Journal of mechanical science and technology, 26(12), 4105-4114.
Bouacha, K., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2010). Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool.International Journal of Refractory Metals and Hard Materials, 28(3), 349-361.
Chen, W. (2000). Cutting forces and surface finish when machining medium hardness steel using CBN tools. International journal of machine tools and manufacture, 40(3), 455-466.
Chinchanikar, S., Salve, A. V., Netake, P., More, A., Kendre, S., & Kumar, R. (2014). Comparative evaluations of surface roughness during hard turning under dry and with water-based and vegetable oil-based cutting fluids.Procedia Materials Science, 5, 1966-1975.
Das, S. R., Dhupal, D., & Kumar, A. (2015). Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool.Measurement, 62, 108-126.
Davim, J. P., & Figueira, L. (2007). Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques.Materials & design, 28(4), 1186-1191.
Davim, J. P., & Figueira, L. (2007). Comparative evaluation of conventional and wiper ceramic tools on cutting forces, surface roughness, and tool wear in hard turning AISI D2 steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(4), 625-633.
Dureja, J. S. (2012). Optimisation of tool wear during hard turning of AISI-H11 steel using TiN coated CBN-L tool. International Journal of Machining and Machinability of Materials 2, 12(1-2), 37-53.
Huang, Y., & Dawson, T. G. (2005). Tool crater wear depth modeling in CBN hard turning. Wear, 258(9), 1455-1461.
Guddat, J., M'Saoubi, R., Alm, P., & Meyer, D. (2011). Hard turning of AISI 52100 using PCBN wiper geometry inserts and the resulting surface integrity.Procedia Engineering, 19, 118-124.
Gaitonde, V. N., Karnik, S. R., Figueira, L., & Davim, J. P. (2009). Analysis of machinability during hard turning of cold work tool steel (type: AISI D2).Materials and Manufacturing Processes, 24(12), 1373-1382.
Mandal, N., Doloi, B., Mondal, B., & Das, R. (2011). Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: Taguchi method and Regression analysis. Measurement, 44(10), 2149-2155.
Mhamdi, M. B., Salem, S. B., Boujelbene, M., & Bayraktar, E. (2013). Experimental study of the chip morphology in turning hardened AISI D2 steel. Journal of Mechanical Science and Technology, 27(11), 3451-3461.
Montgomery, D.C., (2000). Design and analysis of experiments. John Wiley & sons.
Paiva, A. P., Ferreira, J. R., & Balestrassi, P. P. (2007). A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization. Journal of Materials Processing Technology, 189(1), 26-35.
Roy, R.K. (2001). Design of Experiments using the Taguchi Approach: 16 Steps to Product and Process Improvement. John Wiley & Sons, USA.
Sahin, Y. & Motorcu, A.R. (2008). Surface roughness model in machining hardened steel with cubic boron nitride cutting tool. International Journal of Refractory Metals Hard Materials, 26(2), 84–90.
Sahoo, A.K., & Sahoo, B. (2012). Experimental investigations on machinability aspects in finish hard turning of AISI4340 steel using uncoated and multilayer coated carbide inserts. Measurement, 45(8), 2153-2165.
Sahoo, A., Orra, K., & Routra, B. (2013). Application of response surface methodology on investigating flank wear in machining hardened steel using PVD TiN coated mixed ceramic insert. International Journal of Industrial Engineering Computations, 4(4), 469-478.
Sahoo, A. K., & Sahoo, B. (2013). Performance studies of multilayer hard surface coatings (TiN/TiCN/Al 2 O 3/TiN) of indexable carbide inserts in hard machining: Part-II (RSM, grey relational and techno economical approach).Measurement, 46(8), 2868-2884.
Sahoo, A. K., & Mishra, P. C. (2014). A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel. International Journal of Industrial Engineering Computations, 5(3), 407.
Sahoo, A., & Sahoo, B. (2013). Experimental investigation on flank wear and tool life, cost analysis and mathematical model in turning hardened steel using coated carbide inserts. International Journal of Industrial Engineering Computations, 4(4), 571-578.
Sahu, S.K., Mishra, P.C., Orra, K., Sahoo, A.K. (2015). Performance assessment in hard turning of AISI 1015 steel under spray impingement cooling and dry environment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(2), 251-265.
Singh, D., & Rao, P. V. (2007). A surface roughness prediction model for hard turning process. The International Journal of Advanced Manufacturing Technology, 32(11-12), 1115-1124.
Singh, D., & Rao, P. V. (2010). Flank wear prediction of ceramic tools in hard turning. The International Journal of Advanced Manufacturing Technology,50(5-8), 479-493.
Suresh, R., Basavarajappa, S., & Samuel, G. L. (2012). Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool.Measurement, 45(7), 1872-1884.
Zahia, H., Athmane, Y., Lakhdar, B., & Tarek, M. (2015). On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert.International Journal of Industrial Engineering Computations, 6(2), 267-284.
Zhang, X., Liu, C. R., & Yao, Z. (2007). Experimental study and evaluation methodology on hard surface integrity. The International Journal of Advanced Manufacturing Technology, 34(1-2), 141-148.
Bouacha, K., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2010). Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool.International Journal of Refractory Metals and Hard Materials, 28(3), 349-361.
Chen, W. (2000). Cutting forces and surface finish when machining medium hardness steel using CBN tools. International journal of machine tools and manufacture, 40(3), 455-466.
Chinchanikar, S., Salve, A. V., Netake, P., More, A., Kendre, S., & Kumar, R. (2014). Comparative evaluations of surface roughness during hard turning under dry and with water-based and vegetable oil-based cutting fluids.Procedia Materials Science, 5, 1966-1975.
Das, S. R., Dhupal, D., & Kumar, A. (2015). Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool.Measurement, 62, 108-126.
Davim, J. P., & Figueira, L. (2007). Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques.Materials & design, 28(4), 1186-1191.
Davim, J. P., & Figueira, L. (2007). Comparative evaluation of conventional and wiper ceramic tools on cutting forces, surface roughness, and tool wear in hard turning AISI D2 steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(4), 625-633.
Dureja, J. S. (2012). Optimisation of tool wear during hard turning of AISI-H11 steel using TiN coated CBN-L tool. International Journal of Machining and Machinability of Materials 2, 12(1-2), 37-53.
Huang, Y., & Dawson, T. G. (2005). Tool crater wear depth modeling in CBN hard turning. Wear, 258(9), 1455-1461.
Guddat, J., M'Saoubi, R., Alm, P., & Meyer, D. (2011). Hard turning of AISI 52100 using PCBN wiper geometry inserts and the resulting surface integrity.Procedia Engineering, 19, 118-124.
Gaitonde, V. N., Karnik, S. R., Figueira, L., & Davim, J. P. (2009). Analysis of machinability during hard turning of cold work tool steel (type: AISI D2).Materials and Manufacturing Processes, 24(12), 1373-1382.
Mandal, N., Doloi, B., Mondal, B., & Das, R. (2011). Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: Taguchi method and Regression analysis. Measurement, 44(10), 2149-2155.
Mhamdi, M. B., Salem, S. B., Boujelbene, M., & Bayraktar, E. (2013). Experimental study of the chip morphology in turning hardened AISI D2 steel. Journal of Mechanical Science and Technology, 27(11), 3451-3461.
Montgomery, D.C., (2000). Design and analysis of experiments. John Wiley & sons.
Paiva, A. P., Ferreira, J. R., & Balestrassi, P. P. (2007). A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization. Journal of Materials Processing Technology, 189(1), 26-35.
Roy, R.K. (2001). Design of Experiments using the Taguchi Approach: 16 Steps to Product and Process Improvement. John Wiley & Sons, USA.
Sahin, Y. & Motorcu, A.R. (2008). Surface roughness model in machining hardened steel with cubic boron nitride cutting tool. International Journal of Refractory Metals Hard Materials, 26(2), 84–90.
Sahoo, A.K., & Sahoo, B. (2012). Experimental investigations on machinability aspects in finish hard turning of AISI4340 steel using uncoated and multilayer coated carbide inserts. Measurement, 45(8), 2153-2165.
Sahoo, A., Orra, K., & Routra, B. (2013). Application of response surface methodology on investigating flank wear in machining hardened steel using PVD TiN coated mixed ceramic insert. International Journal of Industrial Engineering Computations, 4(4), 469-478.
Sahoo, A. K., & Sahoo, B. (2013). Performance studies of multilayer hard surface coatings (TiN/TiCN/Al 2 O 3/TiN) of indexable carbide inserts in hard machining: Part-II (RSM, grey relational and techno economical approach).Measurement, 46(8), 2868-2884.
Sahoo, A. K., & Mishra, P. C. (2014). A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel. International Journal of Industrial Engineering Computations, 5(3), 407.
Sahoo, A., & Sahoo, B. (2013). Experimental investigation on flank wear and tool life, cost analysis and mathematical model in turning hardened steel using coated carbide inserts. International Journal of Industrial Engineering Computations, 4(4), 571-578.
Sahu, S.K., Mishra, P.C., Orra, K., Sahoo, A.K. (2015). Performance assessment in hard turning of AISI 1015 steel under spray impingement cooling and dry environment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(2), 251-265.
Singh, D., & Rao, P. V. (2007). A surface roughness prediction model for hard turning process. The International Journal of Advanced Manufacturing Technology, 32(11-12), 1115-1124.
Singh, D., & Rao, P. V. (2010). Flank wear prediction of ceramic tools in hard turning. The International Journal of Advanced Manufacturing Technology,50(5-8), 479-493.
Suresh, R., Basavarajappa, S., & Samuel, G. L. (2012). Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool.Measurement, 45(7), 1872-1884.
Zahia, H., Athmane, Y., Lakhdar, B., & Tarek, M. (2015). On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert.International Journal of Industrial Engineering Computations, 6(2), 267-284.
Zhang, X., Liu, C. R., & Yao, Z. (2007). Experimental study and evaluation methodology on hard surface integrity. The International Journal of Advanced Manufacturing Technology, 34(1-2), 141-148.