How to cite this paper
Jaggi, C., Tiwari, S & Goel, S. (2016). Replenishment policy for non-instantaneous deteriorating items in a two storage facilities under inflationary conditions.International Journal of Industrial Engineering Computations , 7(3), 489-506.
Refrences
Aggarwal, K. K., Aggarwal, S. P., & Jaggi, C. K. (1997). Impact of inflation and credit policies on economic ordering. Bulletin of Pure and Applied Sciences, 16(1), 93-100.
Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275-284.
Bose, S., Goswami, A., & Chaudhuri, K. S. (1995). An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. Journal of the Operational Research Society, 46(6), 771-782.
Bierman, H., & Thomas, J. (1977). Inventory decisions under inflationary conditions. Decision Sciences, 8(1), 151-155.
Bhunia, A. K., Jaggi, C. K., Sharma, A., & Sharma, R. (2014). A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging. Applied Mathematics and Computation, 232, 1125-1137.
Buzacott, J.A. (1975). Economic order quantity with inflation. Operations Research Quarterly, 26(3), 553–558.
Chang, C. T., Teng, J. T., & Goyal, S. K. (2010). Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. International Journal of Production Economics, 123(1), 62-68.
Chung, K. J., & Lin, C. N. (2001). Optimal inventory replenishment models for deteriorating items taking account of time discounting. Computer and Operational Research, 28, 67–83.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions, 5(4), 323-326.
Dye, C. Y., Ouyang, L. Y., & Hsieh, T. P. (2007). Deterministic inventory model for deteriorating items with capacity constraint and time-proportional backlogging rate. European Journal of Operational Research, 178(3), 789-807.
Dye, C. Y. (2013). The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega, 41(5), 872-880.
Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of industrial Engineering, 14(5), 238-243.
Geetha, K. V., & Uthayakumar, R. (2010). Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. Journal of Computational and Applied Mathematics, 233(10), 2492-2505.
Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of operational research, 134(1), 1-16.
Hartley VR (1976) Operations Research – A Managerial Emphasis. Good Year, Santa Monica, California, 315–317.
Hsieh, T. P., Dye, C. Y., & Ouyang, L. Y. (2008). Determining optimal lot size for a two-warehouse system with deterioration and shortages using net present value. European Journal of Operational Research, 191(1), 182-192.
Jaggi, C. K., Aggarwal, K. K., & Goel, S. K. (2006). Optimal order policy for deteriorating items with inflation induced demand. International Journal of Production Economics, 103(2), 707-714.
Jaggi, C.K. & Khanna, A. (2009). The retailer’s procurement policy with credit-linked demand under inflationary conditions. International Journal of Procurement Management, 2(2), 163-179.
Jaggi, C. K., & Verma, P. (2010). A deterministic order level inventory model for deteriorating items with two storage facilities under FIFO dispatching policy. International Journal of Procurement Management, 3(3), 265-278.
Jaggi, C. K., & Verma, P. (2010). An optimal replenishment policy for non-instantaneous deteriorating items with two storage facilities. International Journal of Services Operations and Informatics, 5(3), 209-230.
Jaggi, C. K., Pareek, S., Khanna, A., & Sharma, R. (2014). Credit financing in a two-warehouse environment for deteriorating items with price-sensitive demand and fully backlogged shortages. Applied Mathematical Modelling, 38(21–22), 5315–5333.
Lee, C. C., & Hsu, S. L. (2009). A two-warehouse production model for deteriorating inventory items with time-dependent demands. European Journal of Operational Research, 194(3), 700-710.
Liang, Y., & Zhou, F. (2011). A two-warehouse inventory model for deteriorating items under conditionally permissible delay in payment. Applied Mathematical Modelling, 35(5), 2221-2231.
Maihami, R., & Kamalabadi, I. N. (2012a). Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics, 136(1), 116-122.
Maihami, R., & Abadi, I. N. K. (2012b). Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging. Mathematical and Computer Modelling, 55(5), 1722-1733.
Misra, R. B. (1975). Optimum production lot size model for a system with deteriorating inventory. International Journal of Production Research, 13(5), 495-505.
Misra, R. B. (1979). A note on optimal inventory management under inflation. Naval Research Logistics Quarterly, 26(1), 161-165.
Moon, I., & Lee, S. (2000). The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle. European Journal of Operational Research, 125(3), 588-601.
Niu, B., & Xie, J. (2008). A note on “Two-warehouse inventory model with deterioration under FIFO dispatch policy”. European Journal of Operational Research, 190(2), 571-577.
Ouyang, L. Y., Wu, K. S., & Yang, C. T. (2006). A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Computers & Industrial Engineering, 51(4), 637-651.
Ouyang, L. Y., Wu, K. S., & Yang, C. T. (2008). Retailer & apos; s ordering policy for non-instantaneous deteriorating items with quantity discount, stock-dependent demand and stochastic backorder rate. Journal of the Chinese Institute of Industrial Engineers, 25(1), 62-72.
Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of the Operational Research society, 42(1): 27–37.
Sarker, B. R., Jamal, A. M. M., & Wang, S. (2000). Supply chain models for perishable products under inflation and permissible delay in payment. Computers & Operations Research, 27(1), 59-75.
Sarkar, B., & Moon, I. (2011). An EPQ model with inflation in an imperfect production system. Applied Mathematics and Computation, 217(13), 6159-6167.
Shah, N. H., Soni, H. N., & Patel, K. A. (2013). Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega, 41(2), 421-430.
Soni, H. N., & Patel, K. A. (2013). Joint pricing and replenishment policies for non-instantaneous deteriorating items with imprecise deterioration free time and credibility constraint. Computers & Industrial Engineering, 66(4), 944-951.
Tsao, Y. C. (2014). Joint location, inventory, and preservation decisions for non-instantaneous deterioration items under delay in payments. International Journal of Systems Science, (ahead-of-print), 1-14.
Wee, H. M., & Law, S. T. (2001). Replenishment and pricing policy for deteriorating items taking into account the time-value of money. International Journal of Production Economics, 71(1), 213-220.
Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, 101(2), 369-384.
Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2009). Coordinating replenishment and pricing policies for non-instantaneous deteriorating items with price-sensitive demand. International Journal of Systems Science, 40(12), 1273-1281.
Yang, H. L., Teng, J. T., & Chern, M. S. (2001). Deterministic inventory lot?size models under inflation with shortages and deterioration for fluctuating demand. Naval Research Logistics (NRL), 48(2), 144-158.
Yang, H. L. (2004). Two-warehouse inventory models for deteriorating items with shortages under inflation. European Journal of Operational Research, 157(2), 344-356.
Yang, H. L. (2006). Two-warehouse partial backlogging inventory models for deteriorating items under inflation. International Journal of Production Economics, 103(1), 362-370.
Yang, H. L. (2012). Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation. International Journal of Production Economics, 138(1), 107-116.
Zhou, Y. W., & Yang, S. L. (2005). A two-warehouse inventory model for items with stock-level-dependent demand rate. International Journal of Production Economics, 95(2), 215-228.
Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275-284.
Bose, S., Goswami, A., & Chaudhuri, K. S. (1995). An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. Journal of the Operational Research Society, 46(6), 771-782.
Bierman, H., & Thomas, J. (1977). Inventory decisions under inflationary conditions. Decision Sciences, 8(1), 151-155.
Bhunia, A. K., Jaggi, C. K., Sharma, A., & Sharma, R. (2014). A two-warehouse inventory model for deteriorating items under permissible delay in payment with partial backlogging. Applied Mathematics and Computation, 232, 1125-1137.
Buzacott, J.A. (1975). Economic order quantity with inflation. Operations Research Quarterly, 26(3), 553–558.
Chang, C. T., Teng, J. T., & Goyal, S. K. (2010). Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. International Journal of Production Economics, 123(1), 62-68.
Chung, K. J., & Lin, C. N. (2001). Optimal inventory replenishment models for deteriorating items taking account of time discounting. Computer and Operational Research, 28, 67–83.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions, 5(4), 323-326.
Dye, C. Y., Ouyang, L. Y., & Hsieh, T. P. (2007). Deterministic inventory model for deteriorating items with capacity constraint and time-proportional backlogging rate. European Journal of Operational Research, 178(3), 789-807.
Dye, C. Y. (2013). The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega, 41(5), 872-880.
Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of industrial Engineering, 14(5), 238-243.
Geetha, K. V., & Uthayakumar, R. (2010). Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. Journal of Computational and Applied Mathematics, 233(10), 2492-2505.
Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of operational research, 134(1), 1-16.
Hartley VR (1976) Operations Research – A Managerial Emphasis. Good Year, Santa Monica, California, 315–317.
Hsieh, T. P., Dye, C. Y., & Ouyang, L. Y. (2008). Determining optimal lot size for a two-warehouse system with deterioration and shortages using net present value. European Journal of Operational Research, 191(1), 182-192.
Jaggi, C. K., Aggarwal, K. K., & Goel, S. K. (2006). Optimal order policy for deteriorating items with inflation induced demand. International Journal of Production Economics, 103(2), 707-714.
Jaggi, C.K. & Khanna, A. (2009). The retailer’s procurement policy with credit-linked demand under inflationary conditions. International Journal of Procurement Management, 2(2), 163-179.
Jaggi, C. K., & Verma, P. (2010). A deterministic order level inventory model for deteriorating items with two storage facilities under FIFO dispatching policy. International Journal of Procurement Management, 3(3), 265-278.
Jaggi, C. K., & Verma, P. (2010). An optimal replenishment policy for non-instantaneous deteriorating items with two storage facilities. International Journal of Services Operations and Informatics, 5(3), 209-230.
Jaggi, C. K., Pareek, S., Khanna, A., & Sharma, R. (2014). Credit financing in a two-warehouse environment for deteriorating items with price-sensitive demand and fully backlogged shortages. Applied Mathematical Modelling, 38(21–22), 5315–5333.
Lee, C. C., & Hsu, S. L. (2009). A two-warehouse production model for deteriorating inventory items with time-dependent demands. European Journal of Operational Research, 194(3), 700-710.
Liang, Y., & Zhou, F. (2011). A two-warehouse inventory model for deteriorating items under conditionally permissible delay in payment. Applied Mathematical Modelling, 35(5), 2221-2231.
Maihami, R., & Kamalabadi, I. N. (2012a). Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. International Journal of Production Economics, 136(1), 116-122.
Maihami, R., & Abadi, I. N. K. (2012b). Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging. Mathematical and Computer Modelling, 55(5), 1722-1733.
Misra, R. B. (1975). Optimum production lot size model for a system with deteriorating inventory. International Journal of Production Research, 13(5), 495-505.
Misra, R. B. (1979). A note on optimal inventory management under inflation. Naval Research Logistics Quarterly, 26(1), 161-165.
Moon, I., & Lee, S. (2000). The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle. European Journal of Operational Research, 125(3), 588-601.
Niu, B., & Xie, J. (2008). A note on “Two-warehouse inventory model with deterioration under FIFO dispatch policy”. European Journal of Operational Research, 190(2), 571-577.
Ouyang, L. Y., Wu, K. S., & Yang, C. T. (2006). A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Computers & Industrial Engineering, 51(4), 637-651.
Ouyang, L. Y., Wu, K. S., & Yang, C. T. (2008). Retailer & apos; s ordering policy for non-instantaneous deteriorating items with quantity discount, stock-dependent demand and stochastic backorder rate. Journal of the Chinese Institute of Industrial Engineers, 25(1), 62-72.
Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of the Operational Research society, 42(1): 27–37.
Sarker, B. R., Jamal, A. M. M., & Wang, S. (2000). Supply chain models for perishable products under inflation and permissible delay in payment. Computers & Operations Research, 27(1), 59-75.
Sarkar, B., & Moon, I. (2011). An EPQ model with inflation in an imperfect production system. Applied Mathematics and Computation, 217(13), 6159-6167.
Shah, N. H., Soni, H. N., & Patel, K. A. (2013). Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega, 41(2), 421-430.
Soni, H. N., & Patel, K. A. (2013). Joint pricing and replenishment policies for non-instantaneous deteriorating items with imprecise deterioration free time and credibility constraint. Computers & Industrial Engineering, 66(4), 944-951.
Tsao, Y. C. (2014). Joint location, inventory, and preservation decisions for non-instantaneous deterioration items under delay in payments. International Journal of Systems Science, (ahead-of-print), 1-14.
Wee, H. M., & Law, S. T. (2001). Replenishment and pricing policy for deteriorating items taking into account the time-value of money. International Journal of Production Economics, 71(1), 213-220.
Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, 101(2), 369-384.
Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2009). Coordinating replenishment and pricing policies for non-instantaneous deteriorating items with price-sensitive demand. International Journal of Systems Science, 40(12), 1273-1281.
Yang, H. L., Teng, J. T., & Chern, M. S. (2001). Deterministic inventory lot?size models under inflation with shortages and deterioration for fluctuating demand. Naval Research Logistics (NRL), 48(2), 144-158.
Yang, H. L. (2004). Two-warehouse inventory models for deteriorating items with shortages under inflation. European Journal of Operational Research, 157(2), 344-356.
Yang, H. L. (2006). Two-warehouse partial backlogging inventory models for deteriorating items under inflation. International Journal of Production Economics, 103(1), 362-370.
Yang, H. L. (2012). Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation. International Journal of Production Economics, 138(1), 107-116.
Zhou, Y. W., & Yang, S. L. (2005). A two-warehouse inventory model for items with stock-level-dependent demand rate. International Journal of Production Economics, 95(2), 215-228.