How to cite this paper
Bolaños, R., O, E & E, M. (2016). A population-based algorithm for the multi travelling salesman problem.International Journal of Industrial Engineering Computations , 7(2), 245-256.
Refrences
Angel, R. D., Caudle, W. L., Noonan, R., & Whinston, A. N. D. A. (1972). Computer-assisted school bus scheduling. Management Science, 18(6), B-279.
Bektas, T. (2006). The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega, 34(3), 209-219.
Bellmore, M., & Hong, S. (1974). Transformation of multisalesman problem to the standard traveling salesman problem. Journal of the ACM (JACM), 21(3), 500-504.
Brumitt, B. L., & Stentz, A. (1998, May). GRAMMPS: A generalized mission planner for multiple mobile robots in unstructured environments. In Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on(Vol. 2, pp. 1564-1571). IEEE.
Calvo, R. W., & Cordone, R. (2003). A heuristic approach to the overnight security service problem. Computers & Operations Research, 30(9), 1269-1287.
Carter, A. E., & Ragsdale, C. T. (2002). Scheduling pre-printed newspaper advertising inserts using genetic algorithms. Omega, 30(6), 415-421.
Chen, S. H., & Chen, M. C. (2011, November). Operators of the two-part encoding genetic algorithm in solving the multiple traveling salesmen problem. In Technologies and Applications of Artificial Intelligence (TAAI), 2011 International Conference on (pp. 331-336). IEEE.
Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling salesman problem (No. RR-388). Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group.
Chu, P. C., & Beasley, J. E. (1997). A genetic algorithm for the generalised assignment problem. Computers & Operations Research, 24(1), 17-23.
Faigl, J., Kulich, M., & Preucil, L. (2005, September). Multiple traveling salesmen problem with hierarchy of cities in inspection task with limited visibility. In proceedings of the 5th Workshop on Self-Organizing Maps. Universit Paris-Sud (pp. 91-98).
Gilbert, K. C., & Hofstra, R. B. (1992). A new multiperiod multiple traveling salesman problem with heuristic and application to a scheduling problem.Decision Sciences, 23(1), 250-259.
Goldberg, D. E., & Deb, K. A comparison of selection scheme used in genetic algorithms. Foundations of Genatic Algorithms, 69-93.
Goldberg, D. E., & Lingle, R. (1985, July). Alleles, loci, and the traveling salesman problem. In Proceedings of the first international conference on genetic algorithms and their applications (pp. 154-159). Lawrence Erlbaum Associates, Publishers.
Gorenstein, S. (1970). Printing press scheduling for multi-edition periodicals.Management Science, 16(6), B-373.
GuoXing, Y. (1995). Transformation of multidepot multisalesmen problem to the standard travelling salesman problem. European Journal of Operational Research, 81(3), 557-560.
Gutin, G., Yeo, A., & Zverovich, A. (2002). Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP. Discrete Applied Mathematics, 117(1), 81-86.
Junjie, P., & Dingwei, W. (2006, August). An ant colony optimization algorithm for multiple travelling salesman problem. In Innovative Computing, Information and Control, 2006. ICICIC & apos; 06. First International Conference on (Vol. 1, pp. 210-213). IEEE.
Laporte, G., & Nobert, Y. (1980). A cutting planes algorithm for the m-salesmen problem. Journal of the Operational Research Society, 1017-1023.
Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations research, 21(2), 498-516.
Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4), 326-329.
Okonjo-Adigwe, C. (1988). An effective method of balancing the workload amongst salesmen. Omega, 16(2), 159-163.
Oliver, I. M., Smith, D., & Holland, J. R. (1987). Study of permutation crossover operators on the traveling salesman problem. In Genetic algorithms and their applications: proceedings of the second International Conference on Genetic Algorithms: July 28-31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA. Hillsdale, NJ: L. Erlhaum Associates, 1987..
Reinhelt, G. (2014). {TSPLIB}: a library of sample instances for the TSP (and related problems) from various sources and of various types. URL: http://comopt. ifi. uniheidelberg. de/software/TSPLIB95.
Russell, R. A. (1977). Technical Note—An Effective Heuristic for the M-Tour Traveling Salesman Problem with Some Side Conditions. Operations Research, 25(3), 517-524.
Sariel-Talay, S., Balch, T. R., & Erdogan, N. (2009). Multiple traveling robot problem: A solution based on dynamic task selection and robust execution.Mechatronics, IEEE/ASME Transactions on, 14(2), 198-206.
Sedighpour, M., Yousefikhoshbakht, M., & Mahmoodi Darani, N. (2012). An Effective Genetic Algorithm for Solving the Multiple Traveling Salesman Problem. Journal of Optimization in Industrial Engineering, (8), 73-79.
Song, C. H., Lee, K., & Lee, W. D. (2003, July). Extended simulated annealing for augmented TSP and multi-salesmen TSP. In Neural Networks, 2003. Proceedings of the International Joint Conference on (Vol. 3, pp. 2340-2343). IEEE.
Subramanian, A., Penna, P. H. V., Uchoa, E., & Ochi, L. S. (2012). A hybrid algorithm for the heterogeneous fleet vehicle routing problem. European Journal of Operational Research, 221(2), 285-295.
Svestka, J. A., & Huckfeldt, V. E. (1973). Computational experience with an m-salesman traveling salesman algorithm. Management Science, 19(7), 790-799.
Syswerda, G. (1991). Schedule optimization using genetic algorithms.Handbook of genetic algorithms.
Sze, S., & Tiong, W. (2007). A comparison between heuristic and meta-heuristic methods for solving the multiple traveling salesman problem. World Academy of Science, Engineering and Technology, 1.
Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex. European Journal of Operational Research, 124(2), 267-282.
Yousefikhoshbakht, M., & Sedighpour, M. (2012). A combination of sweep algorithm and elite ant colony optimization for solving the multiple traveling salesman problem. Proceedings of the Romanian Academy A, 13(4), 295-302.
Yu, Z., Jinhai, L., Guochang, G., Rubo, Z., & Haiyan, Y. (2002). An implementation of evolutionary computation for path planning of cooperative mobile robots. In Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on (Vol. 3, pp. 1798-1802). IEEE.
Zhang, T., Gruver, W., & Smith, M. H. (1999). Team scheduling by genetic search. In Intelligent Processing and Manufacturing of Materials, 1999. IPMM & apos; 99. Proceedings of the Second International Conference on (Vol. 2, pp. 839-844). IEEE.
Bektas, T. (2006). The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega, 34(3), 209-219.
Bellmore, M., & Hong, S. (1974). Transformation of multisalesman problem to the standard traveling salesman problem. Journal of the ACM (JACM), 21(3), 500-504.
Brumitt, B. L., & Stentz, A. (1998, May). GRAMMPS: A generalized mission planner for multiple mobile robots in unstructured environments. In Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on(Vol. 2, pp. 1564-1571). IEEE.
Calvo, R. W., & Cordone, R. (2003). A heuristic approach to the overnight security service problem. Computers & Operations Research, 30(9), 1269-1287.
Carter, A. E., & Ragsdale, C. T. (2002). Scheduling pre-printed newspaper advertising inserts using genetic algorithms. Omega, 30(6), 415-421.
Chen, S. H., & Chen, M. C. (2011, November). Operators of the two-part encoding genetic algorithm in solving the multiple traveling salesmen problem. In Technologies and Applications of Artificial Intelligence (TAAI), 2011 International Conference on (pp. 331-336). IEEE.
Christofides, N. (1976). Worst-case analysis of a new heuristic for the travelling salesman problem (No. RR-388). Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group.
Chu, P. C., & Beasley, J. E. (1997). A genetic algorithm for the generalised assignment problem. Computers & Operations Research, 24(1), 17-23.
Faigl, J., Kulich, M., & Preucil, L. (2005, September). Multiple traveling salesmen problem with hierarchy of cities in inspection task with limited visibility. In proceedings of the 5th Workshop on Self-Organizing Maps. Universit Paris-Sud (pp. 91-98).
Gilbert, K. C., & Hofstra, R. B. (1992). A new multiperiod multiple traveling salesman problem with heuristic and application to a scheduling problem.Decision Sciences, 23(1), 250-259.
Goldberg, D. E., & Deb, K. A comparison of selection scheme used in genetic algorithms. Foundations of Genatic Algorithms, 69-93.
Goldberg, D. E., & Lingle, R. (1985, July). Alleles, loci, and the traveling salesman problem. In Proceedings of the first international conference on genetic algorithms and their applications (pp. 154-159). Lawrence Erlbaum Associates, Publishers.
Gorenstein, S. (1970). Printing press scheduling for multi-edition periodicals.Management Science, 16(6), B-373.
GuoXing, Y. (1995). Transformation of multidepot multisalesmen problem to the standard travelling salesman problem. European Journal of Operational Research, 81(3), 557-560.
Gutin, G., Yeo, A., & Zverovich, A. (2002). Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP. Discrete Applied Mathematics, 117(1), 81-86.
Junjie, P., & Dingwei, W. (2006, August). An ant colony optimization algorithm for multiple travelling salesman problem. In Innovative Computing, Information and Control, 2006. ICICIC & apos; 06. First International Conference on (Vol. 1, pp. 210-213). IEEE.
Laporte, G., & Nobert, Y. (1980). A cutting planes algorithm for the m-salesmen problem. Journal of the Operational Research Society, 1017-1023.
Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-salesman problem. Operations research, 21(2), 498-516.
Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4), 326-329.
Okonjo-Adigwe, C. (1988). An effective method of balancing the workload amongst salesmen. Omega, 16(2), 159-163.
Oliver, I. M., Smith, D., & Holland, J. R. (1987). Study of permutation crossover operators on the traveling salesman problem. In Genetic algorithms and their applications: proceedings of the second International Conference on Genetic Algorithms: July 28-31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA. Hillsdale, NJ: L. Erlhaum Associates, 1987..
Reinhelt, G. (2014). {TSPLIB}: a library of sample instances for the TSP (and related problems) from various sources and of various types. URL: http://comopt. ifi. uniheidelberg. de/software/TSPLIB95.
Russell, R. A. (1977). Technical Note—An Effective Heuristic for the M-Tour Traveling Salesman Problem with Some Side Conditions. Operations Research, 25(3), 517-524.
Sariel-Talay, S., Balch, T. R., & Erdogan, N. (2009). Multiple traveling robot problem: A solution based on dynamic task selection and robust execution.Mechatronics, IEEE/ASME Transactions on, 14(2), 198-206.
Sedighpour, M., Yousefikhoshbakht, M., & Mahmoodi Darani, N. (2012). An Effective Genetic Algorithm for Solving the Multiple Traveling Salesman Problem. Journal of Optimization in Industrial Engineering, (8), 73-79.
Song, C. H., Lee, K., & Lee, W. D. (2003, July). Extended simulated annealing for augmented TSP and multi-salesmen TSP. In Neural Networks, 2003. Proceedings of the International Joint Conference on (Vol. 3, pp. 2340-2343). IEEE.
Subramanian, A., Penna, P. H. V., Uchoa, E., & Ochi, L. S. (2012). A hybrid algorithm for the heterogeneous fleet vehicle routing problem. European Journal of Operational Research, 221(2), 285-295.
Svestka, J. A., & Huckfeldt, V. E. (1973). Computational experience with an m-salesman traveling salesman algorithm. Management Science, 19(7), 790-799.
Syswerda, G. (1991). Schedule optimization using genetic algorithms.Handbook of genetic algorithms.
Sze, S., & Tiong, W. (2007). A comparison between heuristic and meta-heuristic methods for solving the multiple traveling salesman problem. World Academy of Science, Engineering and Technology, 1.
Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex. European Journal of Operational Research, 124(2), 267-282.
Yousefikhoshbakht, M., & Sedighpour, M. (2012). A combination of sweep algorithm and elite ant colony optimization for solving the multiple traveling salesman problem. Proceedings of the Romanian Academy A, 13(4), 295-302.
Yu, Z., Jinhai, L., Guochang, G., Rubo, Z., & Haiyan, Y. (2002). An implementation of evolutionary computation for path planning of cooperative mobile robots. In Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on (Vol. 3, pp. 1798-1802). IEEE.
Zhang, T., Gruver, W., & Smith, M. H. (1999). Team scheduling by genetic search. In Intelligent Processing and Manufacturing of Materials, 1999. IPMM & apos; 99. Proceedings of the Second International Conference on (Vol. 2, pp. 839-844). IEEE.