How to cite this paper
Rabbani, M & Kazemi, S. (2015). Solving uncapacitated multiple allocation p-hub center problem by Dijkstra’s algorithm-based genetic algorithm and simulated annealing.International Journal of Industrial Engineering Computations , 6(3), 405-418.
Refrences
Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European Journal of Operational Research, 190(1), 1-21.
Bashiri, M., Mirzaei, M., & Randall, M. (2013). Modeling fuzzy capacitated p-hub center problem and a genetic algorithm solution. Applied Mathematical Modelling, 37(5), 3513-3525.
Baumgartner, S. (2003). Polyhedral analysis of hub center problems (Doctoral dissertation, Technische Universit?t Kaiserslautern).
Campbell, A. M., Lowe, T. J., & Zhang, L. (2007). The p-hub center allocation problem. European Journal of Operational Research, 176(2), 819-835.
Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems. European Journal of Operational Research, 72(2), 387-405.
Campbell, J. F., & O & apos; Kelly, M. E. (2012). Twenty-five years of hub location research. Transportation Science, 46(2), 153-169.
Contreras, I., Cordeau, J. F., & Laporte, G. (2011). Stochastic uncapacitated hub location. European Journal of Operational Research, 212(3), 518-528.
Contributors, W. (2014). Dijkstra & apos; s algorithm. Wikipedia, The Free Encyclopedia.
Ernst, A. T., Hamacher, H., Jiang, H., Krishnamoorthy, M., & Woeginger, G. (2009). Uncapacitated single and multiple allocation p-hub center problems.Computers & Operations Research, 36(7), 2230-2241.
Farahani, R. Z., Hekmatfar, M., Arabani, A. B., & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64(4), 1096-1109.
Gavriliouk, E. O. (2009). Aggregation in hub location problems. Computers & Operations Research, 36(12), 3136-3142.
Hult, E., Jiang, H., & Ralph, D. (2014). Exact computational approaches to a stochastic uncapacitated single allocation p-hub center problem. Computational Optimization and Applications, 59(1-2), 185-200.
Kara, B. Y., & Tansel, B. C. (2000). On the single-assignment p-hub center problem. European Journal of Operational Research, 125(3), 648-655.
Kratica, J., & Stanimirovi?, Z. (2006). Solving the uncapacitated multiple allocation p-hub center problem by genetic algorithm. Asia-Pacific Journal of Operational Research, 23(04), 425-437.
Liang, H. (2013). The hardness and approximation of the star -hub center problem. Operations Research Letters, 41, 138-141.
Meyer, T., Ernst, A. T., & Krishnamoorthy, M. (2009). A 2-phase algorithm for solving the single allocation p-hub center problem. Computers & Operations Research, 36(12), 3143-3151.
Mohammadi, M., Tavakkoli-Moghaddam, R., Ghodratnama, A., & Rostami, H. (2011). Genetic and Improved Shuffled Frog Leaping Algorithms for a 2-Stage Model of a Hub Covering Location Network.
Mohammadi, M., Tavakkoli-Moghaddam, R., & Rostami, H. (2011b). A multi-objective imperialist competitive algorithm for a capacitated hub covering location problem. International Journal of Industrial Engineering Computations, 2, 671-688.
Pamuk, F. S., & Sepil, C. (2001). A solution to the hub center problem via a single-relocation algorithm with tabu search. IIE Transactions, 33(5), 399-411.
Sim, T., Lowe, T.J., & Thomas, B.W. (2009). The stochastic -hub center problem with service-level constraints. Computers & Operations Research 36(12), 3166-3177.
Yaman, H., & Elloumi, S. (2012). Star p-hub center problem and star p-hub median problem with bounded path lengths. Computers & Operations Research, 39, 2725-2732.
Yaman, H., Kara, B.Y., & Tansel, B.C. (2007). The latest arrival hub location problem for cargo delivery systems with stopovers. Transportation Research Part B: Methodological, 41, 906-919.
Yang, K., Liu, Y.-K., & Yang, G.-Q. (2013a). Solving fuzzy p-hub center problem by genetic algorithm incorporating local search. Applied Soft Computing, 13, 2624-2632.
Yang, K., Liu, Y., & Yang, G. (2013b). An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem. Computers & Industrial Engineering, 64, 133-142.
Yang, K., Liu, Y., & Yang, G. (2014). Optimizing fuzzy p-hub center problem with generalized value-at-risk criterion. Applied Mathematical Modelling, 38, 3987-4005.
Bashiri, M., Mirzaei, M., & Randall, M. (2013). Modeling fuzzy capacitated p-hub center problem and a genetic algorithm solution. Applied Mathematical Modelling, 37(5), 3513-3525.
Baumgartner, S. (2003). Polyhedral analysis of hub center problems (Doctoral dissertation, Technische Universit?t Kaiserslautern).
Campbell, A. M., Lowe, T. J., & Zhang, L. (2007). The p-hub center allocation problem. European Journal of Operational Research, 176(2), 819-835.
Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems. European Journal of Operational Research, 72(2), 387-405.
Campbell, J. F., & O & apos; Kelly, M. E. (2012). Twenty-five years of hub location research. Transportation Science, 46(2), 153-169.
Contreras, I., Cordeau, J. F., & Laporte, G. (2011). Stochastic uncapacitated hub location. European Journal of Operational Research, 212(3), 518-528.
Contributors, W. (2014). Dijkstra & apos; s algorithm. Wikipedia, The Free Encyclopedia.
Ernst, A. T., Hamacher, H., Jiang, H., Krishnamoorthy, M., & Woeginger, G. (2009). Uncapacitated single and multiple allocation p-hub center problems.Computers & Operations Research, 36(7), 2230-2241.
Farahani, R. Z., Hekmatfar, M., Arabani, A. B., & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64(4), 1096-1109.
Gavriliouk, E. O. (2009). Aggregation in hub location problems. Computers & Operations Research, 36(12), 3136-3142.
Hult, E., Jiang, H., & Ralph, D. (2014). Exact computational approaches to a stochastic uncapacitated single allocation p-hub center problem. Computational Optimization and Applications, 59(1-2), 185-200.
Kara, B. Y., & Tansel, B. C. (2000). On the single-assignment p-hub center problem. European Journal of Operational Research, 125(3), 648-655.
Kratica, J., & Stanimirovi?, Z. (2006). Solving the uncapacitated multiple allocation p-hub center problem by genetic algorithm. Asia-Pacific Journal of Operational Research, 23(04), 425-437.
Liang, H. (2013). The hardness and approximation of the star -hub center problem. Operations Research Letters, 41, 138-141.
Meyer, T., Ernst, A. T., & Krishnamoorthy, M. (2009). A 2-phase algorithm for solving the single allocation p-hub center problem. Computers & Operations Research, 36(12), 3143-3151.
Mohammadi, M., Tavakkoli-Moghaddam, R., Ghodratnama, A., & Rostami, H. (2011). Genetic and Improved Shuffled Frog Leaping Algorithms for a 2-Stage Model of a Hub Covering Location Network.
Mohammadi, M., Tavakkoli-Moghaddam, R., & Rostami, H. (2011b). A multi-objective imperialist competitive algorithm for a capacitated hub covering location problem. International Journal of Industrial Engineering Computations, 2, 671-688.
Pamuk, F. S., & Sepil, C. (2001). A solution to the hub center problem via a single-relocation algorithm with tabu search. IIE Transactions, 33(5), 399-411.
Sim, T., Lowe, T.J., & Thomas, B.W. (2009). The stochastic -hub center problem with service-level constraints. Computers & Operations Research 36(12), 3166-3177.
Yaman, H., & Elloumi, S. (2012). Star p-hub center problem and star p-hub median problem with bounded path lengths. Computers & Operations Research, 39, 2725-2732.
Yaman, H., Kara, B.Y., & Tansel, B.C. (2007). The latest arrival hub location problem for cargo delivery systems with stopovers. Transportation Research Part B: Methodological, 41, 906-919.
Yang, K., Liu, Y.-K., & Yang, G.-Q. (2013a). Solving fuzzy p-hub center problem by genetic algorithm incorporating local search. Applied Soft Computing, 13, 2624-2632.
Yang, K., Liu, Y., & Yang, G. (2013b). An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem. Computers & Industrial Engineering, 64, 133-142.
Yang, K., Liu, Y., & Yang, G. (2014). Optimizing fuzzy p-hub center problem with generalized value-at-risk criterion. Applied Mathematical Modelling, 38, 3987-4005.