How to cite this paper
Chatterjee, P & Chakraborty, S. (2014). Flexible manufacturing system selection using preference ranking methods : A comparative study.International Journal of Industrial Engineering Computations , 5(2), 315-338.
Refrences
Bayazit, O. (2005). Use of AHP in decision-making for flexible manufacturing systems. Journal of Manufacturing Technology and Management, 16(7), 808-819.
Bhattacharya, A., Abraham, A., Vasant, P., & Grosan, C. (2007). Evolutionary artificial neural network for selecting flexible manufacturing systems under disparate level-of-satisfaction of decision maker. International Journal of Innovative Computing, Information and Control, 3(1), 131-140.
Borenstein, D. (1998). A visual interactive multicriteria decision analysis model for FMS design. International Journal of Advanced Manufacturing Technology, 14(11), 848-857.
Chan, F.T.S., Jiang, B., & Tang, N.K.H. (2000). The development of intelligent decision support tools to aid the design of flexible manufacturing systems. International Journal of Production Economics, 65(1), 73-84.
Doumpos, M., & Zopounidis, C. (2004). A multi-criteria classification approach based on pair-wise comparison. European Journal of Operational Research, 158(2), 378-389.
Hajkowicz, S., & Higgins, A. (2008). A comparison of multiple criteria analysis techniques for water resource management. European Journal of Operational Research, 184(1), 255-265.
Kaklauskas, A., Zavadskas, E.K., Raslanas, S., Ginevicius, R., Komka, A., & Malinauskas, P. (2006). Selection of low e-windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case. Energy and Buildings, 38(5), 454-462.
Kaklauskas, A., Zavadskas, E.K., & Trinkunas, V. (2007). A multiple criteria decision support on-line system for construction. Engineering Applications of Artificial Intelligence, 20(2), 163-175.
Karsak, E.E., & Tolga, E. (2001). Fuzzy multi-criteria decision-making procedure for evaluating advanced manufacturing system investments. International Journal of Production Economics, 69(1), 49-64.
Karsak, E.E., & Kuzgunkaya, O. (2002). A fuzzy multiple objective programming approach for the selection of a flexible manufacturing system. International Journal of Production Economics, 79(2), 101-111.
Karsak, E.E. (2002). Distance-based fuzzy MCDM approach for evaluating flexible manufacturing system alternatives. International Journal of Production Research, 40(13), 3167-3181.
Karsak, E.E. (2008). Using data envelopment analysis for evaluating flexible manufacturing systems in the presence of imprecise data. International Journal of Advanced Manufacturing Technology, 35(9-10), 867-874.
Kulak, O., & Kahraman, C. (2005). Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. International Journal of Production Economics, 95(3), 415-424.
Liu, S-T. (2008). A fuzzy DEA/AR approach to the selection of flexible manufacturing systems. Computers & Industrial Engineering, 54(1), 66-76.
Lotfi, V. (1995). Implementing flexible automation: A multiple criteria decision making approach. International Journal of Production Economics, 38(2-3), 255-268.
Martel, J.M., & Matarazzo, B. (2005). Other outranking approaches. In: Figueira J, Salvatore G, Ehrgott M. (Eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. Springer: New York.
Mehrabad, M.S., & Anvari, M. (2010). Provident decision making by considering dynamic and fuzzy environment for FMS evaluation. International Journal of Production Research, 48(15), 4555-4584.
O’Grady, P.J., & Menon, U. (1986). A concise review of flexible manufacturing systems and FMS literature. Computers in Industry, 7(2), 155-167.
Ovchinnikov, S., & Roubens, M. (1992). On fuzzy strict preference, indifference, and incomparability relations. Fuzzy Sets and Systems, 49(1), 15-20.
Pastijn, H., & Leysen, J. (1989). Constructing an outranking relation with ORESTE. Mathematical and Computer Modelling, 12(10-11), 1255-1268.
Parkan, C., & Wu, M-L. (1997). On the equivalence of operational performance measurement and multiple attribute decision making. International Journal of Production Research, 35(11), 2963-2988.
Parkan, C., & Wu, M-L. (2000). Comparison of three modern multicriteria decision-making tools. International Journal of Systems Science, 31(4), 497-517.
Raju, K.S., & Kumar, D.N. (1999). Multicriterion decision making in irrigation planning. Agricultural Systems, 62(2), 117-129.
Rao, R.V. (2006). A decision-making framework model for evaluating flexible manufacturing systems using digraph and matrix methods. International Journal of Advanced Manufacturing Technology, 30(11-12), 1101-1110.
Rao, R.V. (2008). Evaluating flexible manufacturing systems using a combined multiple attribute decision making method. International Journal of Production Research, 46(7), 1975-1989.
Rao, R.V., & Parnichkun, M. (2009). Flexible manufacturing system selection using a combinatorial mathematics-based decision-making method. International Journal of Production Research, 47(24), 6981-6998.
Rao, R.V. (2009). Flexible manufacturing system selection using an improved compromise ranking method. International Journal of Industrial and System Engineering, 4(2), 198-215.
Rao, R.V., & Singh, D. (2011). Evaluating flexible manufacturing systems using Euclidean distance-based integrated approach. International Journal of Decision Sciences, Risk and Management, 3(1-2), 32-53.
Roubens, M. (1982). Preference relations on actions and criteria in multicriteria decision making. European Journal of Operational Research, 10(1), 51-55.
Sarkis, J. (1997). Evaluating flexible manufacturing systems alternatives using data envelopment analysis. The Engineering Economist, 43(1), 25-47.
Shang, J., & Sueyoshi, T. (1995). A unified framework for the selection of a flexible manufacturing system. European Journal of Operational Research, 85(2), 297-315.
Talluri, S., Whiteside, M.M., & Seipel, S.J. (2000). A nonparametric stochastic procedure for FMS evaluation. European Journal of Operational Research, 124(3), 529-538.
Teghem, J., Delhaye, C., & Kunsch, P.L. (1989). An interactive decision support system (IDSS) for multicriteria decision aid. Mathematical and Computer Modelling, 12(10-11), 1311-1320
Turskis, Z., & Zavadskas, E.K. (2010). A novel method for multiple criteria analysis: Grey additive ratio assessment (ARAS-G) method. Informatica, 21(4), 597-610.
Wabalackis, R.N. (1988). Justification of FMS with the analytic hierarchy process. Journal of Manufacturing Systems, 7(3), 175-182.
Zavadskas, E.K., Kaklauskas, A., Turskis, Z., & Tamo?aitien?, J. (2008). Selection of the effective dwelling house walls by applying attributes values determined at intervals. Journal of Civil Engineering & Management, 14(2), 85-93.
Zavadskas, E.K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy, 16(2), 159-172.
Bhattacharya, A., Abraham, A., Vasant, P., & Grosan, C. (2007). Evolutionary artificial neural network for selecting flexible manufacturing systems under disparate level-of-satisfaction of decision maker. International Journal of Innovative Computing, Information and Control, 3(1), 131-140.
Borenstein, D. (1998). A visual interactive multicriteria decision analysis model for FMS design. International Journal of Advanced Manufacturing Technology, 14(11), 848-857.
Chan, F.T.S., Jiang, B., & Tang, N.K.H. (2000). The development of intelligent decision support tools to aid the design of flexible manufacturing systems. International Journal of Production Economics, 65(1), 73-84.
Doumpos, M., & Zopounidis, C. (2004). A multi-criteria classification approach based on pair-wise comparison. European Journal of Operational Research, 158(2), 378-389.
Hajkowicz, S., & Higgins, A. (2008). A comparison of multiple criteria analysis techniques for water resource management. European Journal of Operational Research, 184(1), 255-265.
Kaklauskas, A., Zavadskas, E.K., Raslanas, S., Ginevicius, R., Komka, A., & Malinauskas, P. (2006). Selection of low e-windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case. Energy and Buildings, 38(5), 454-462.
Kaklauskas, A., Zavadskas, E.K., & Trinkunas, V. (2007). A multiple criteria decision support on-line system for construction. Engineering Applications of Artificial Intelligence, 20(2), 163-175.
Karsak, E.E., & Tolga, E. (2001). Fuzzy multi-criteria decision-making procedure for evaluating advanced manufacturing system investments. International Journal of Production Economics, 69(1), 49-64.
Karsak, E.E., & Kuzgunkaya, O. (2002). A fuzzy multiple objective programming approach for the selection of a flexible manufacturing system. International Journal of Production Economics, 79(2), 101-111.
Karsak, E.E. (2002). Distance-based fuzzy MCDM approach for evaluating flexible manufacturing system alternatives. International Journal of Production Research, 40(13), 3167-3181.
Karsak, E.E. (2008). Using data envelopment analysis for evaluating flexible manufacturing systems in the presence of imprecise data. International Journal of Advanced Manufacturing Technology, 35(9-10), 867-874.
Kulak, O., & Kahraman, C. (2005). Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. International Journal of Production Economics, 95(3), 415-424.
Liu, S-T. (2008). A fuzzy DEA/AR approach to the selection of flexible manufacturing systems. Computers & Industrial Engineering, 54(1), 66-76.
Lotfi, V. (1995). Implementing flexible automation: A multiple criteria decision making approach. International Journal of Production Economics, 38(2-3), 255-268.
Martel, J.M., & Matarazzo, B. (2005). Other outranking approaches. In: Figueira J, Salvatore G, Ehrgott M. (Eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. Springer: New York.
Mehrabad, M.S., & Anvari, M. (2010). Provident decision making by considering dynamic and fuzzy environment for FMS evaluation. International Journal of Production Research, 48(15), 4555-4584.
O’Grady, P.J., & Menon, U. (1986). A concise review of flexible manufacturing systems and FMS literature. Computers in Industry, 7(2), 155-167.
Ovchinnikov, S., & Roubens, M. (1992). On fuzzy strict preference, indifference, and incomparability relations. Fuzzy Sets and Systems, 49(1), 15-20.
Pastijn, H., & Leysen, J. (1989). Constructing an outranking relation with ORESTE. Mathematical and Computer Modelling, 12(10-11), 1255-1268.
Parkan, C., & Wu, M-L. (1997). On the equivalence of operational performance measurement and multiple attribute decision making. International Journal of Production Research, 35(11), 2963-2988.
Parkan, C., & Wu, M-L. (2000). Comparison of three modern multicriteria decision-making tools. International Journal of Systems Science, 31(4), 497-517.
Raju, K.S., & Kumar, D.N. (1999). Multicriterion decision making in irrigation planning. Agricultural Systems, 62(2), 117-129.
Rao, R.V. (2006). A decision-making framework model for evaluating flexible manufacturing systems using digraph and matrix methods. International Journal of Advanced Manufacturing Technology, 30(11-12), 1101-1110.
Rao, R.V. (2008). Evaluating flexible manufacturing systems using a combined multiple attribute decision making method. International Journal of Production Research, 46(7), 1975-1989.
Rao, R.V., & Parnichkun, M. (2009). Flexible manufacturing system selection using a combinatorial mathematics-based decision-making method. International Journal of Production Research, 47(24), 6981-6998.
Rao, R.V. (2009). Flexible manufacturing system selection using an improved compromise ranking method. International Journal of Industrial and System Engineering, 4(2), 198-215.
Rao, R.V., & Singh, D. (2011). Evaluating flexible manufacturing systems using Euclidean distance-based integrated approach. International Journal of Decision Sciences, Risk and Management, 3(1-2), 32-53.
Roubens, M. (1982). Preference relations on actions and criteria in multicriteria decision making. European Journal of Operational Research, 10(1), 51-55.
Sarkis, J. (1997). Evaluating flexible manufacturing systems alternatives using data envelopment analysis. The Engineering Economist, 43(1), 25-47.
Shang, J., & Sueyoshi, T. (1995). A unified framework for the selection of a flexible manufacturing system. European Journal of Operational Research, 85(2), 297-315.
Talluri, S., Whiteside, M.M., & Seipel, S.J. (2000). A nonparametric stochastic procedure for FMS evaluation. European Journal of Operational Research, 124(3), 529-538.
Teghem, J., Delhaye, C., & Kunsch, P.L. (1989). An interactive decision support system (IDSS) for multicriteria decision aid. Mathematical and Computer Modelling, 12(10-11), 1311-1320
Turskis, Z., & Zavadskas, E.K. (2010). A novel method for multiple criteria analysis: Grey additive ratio assessment (ARAS-G) method. Informatica, 21(4), 597-610.
Wabalackis, R.N. (1988). Justification of FMS with the analytic hierarchy process. Journal of Manufacturing Systems, 7(3), 175-182.
Zavadskas, E.K., Kaklauskas, A., Turskis, Z., & Tamo?aitien?, J. (2008). Selection of the effective dwelling house walls by applying attributes values determined at intervals. Journal of Civil Engineering & Management, 14(2), 85-93.
Zavadskas, E.K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy, 16(2), 159-172.