How to cite this paper
AlHadid, I., Abu-Taieh, E., Alkhawaldeh, R., Khwaldeh, S., Masadeh, R., Alrowwad, A., Afaneh, S & Almhai, F. (2023). Depression and anxiety in social media: Jordan case study.International Journal of Data and Network Science, 7(3), 1381-1396.
Refrences
Abu-Taieh, E. M., AlHadid, I., Kaabneh, K., Alkhawaldeh, R. S., Khwaldeh, S., Masa’deh, R. E., & Alrowwad, A. A. (2022a). Predictors of Smartphone Addiction and Social Isolation among Jordanian Children and Adolescents Using SEM and ML. Big Data and Cognitive Computing, 6(3), 92.
Abu-Taieh, E. M., AlHadid, I., Masa’deh, R. E., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. A. (2022b). Factors Affecting the Use of Social Networks and Its Effect on Anxiety and Depression among Parents and Their Children: Predictors Using ML, SEM and Extended TAM. International Journal of Environmental Research and Public Health, 19(21), 13764.
Abu-Taieh, E. M., AlHadid, I., Abu-Tayeh, S., Masa’deh, R. E., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. A. (2022c). Continued intention to use of M-Banking in Jordan by integrating UTAUT, TPB, TAM and service quality with ML. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 120.
Abu-Taieh, E., AlHadid, I., Masa’deh, R. E., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. A. (2022d). Factors influ-encing YouTube as a learning tool and its influence on academic achievement in a bilingual environment using ex-tended information adoption model (IAM) with ML prediction—Jordan case study. Applied Sciences, 12(12), 5856.
Alalwan, A. A., Baabdullah, A. M., Rana, N. P., Tamilmani, K., & Dwivedi, Y. K. (2018). Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust. Technology in Socie-ty, 55, 100-110.
Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., Lal, B., & Williams, M. D. (2015). Consumer adoption of Internet banking in Jordan: Examining the role of hedonic motivation, habit, self-efficacy and trust. Journal of Financial Services Market-ing, 20, 145-157
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99-110
AlHadid, I., Abu-Taieh, E., Alkhawaldeh, R. S., Khwaldeh, S., Masa’deh, R. E., Kaabneh, K., & Alrowwad, A. A. (2022). Predictors for E-Government Adoption of SANAD App Services Integrating UTAUT, TPB, TAM, Trust, and Perceived Risk. International Journal of Environmental Research and Public Health, 19(14), 8281.
Alkhawaldeh, R. S. (2021). Arabic (Indian) digit handwritten recognition using recurrent transfer deep architecture. Soft Computing, 25(4), 3131-3141.
Alkhawaldeh, R. S., Alawida, M., Alshdaifat, N. F. F., Alma’aitah, W. Z. A., & Almasri, A. (2022). Ensemble deep trans-fer learning model for Arabic (Indian) handwritten digit recognition. Neural Computing and Applications, 34(1), 705-719.
Animesh, A., Pinsonneault, A., Yang, S. B., & Oh, W. (2011). An odyssey into virtual worlds: exploring the impacts of technological and spatial environments on intention to purchase virtual products. Mis Quarterly, 789-810.
Baabdullah, A. M. (2018). Consumer adoption of Mobile Social Network Games (M-SNGs) in Saudi Arabia: The role of social influence, hedonic motivation and trust. Technology in society, 53, 91-102.
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., & Patil, P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International journal of information management, 44, 38-52.
Bashir, I., & Madhavaiah, C. (2015). Consumer attitude and behavioural intention towards Internet banking adoption in India. Journal of Indian Business Research, 7(1), 67-102.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing sci-ence, 16, 74-94.
Blank, G., & Lutz, C. (2017). Representativeness of social media in great britain: investigating Facebook, Linkedin, Twit-ter, Pinterest, Google+, and Instagram. American Behavioral Scientist, 61(7), 741-756.
Black, W., & Babin, B. J. (2019). Multivariate data analysis: Its approach, evolution, and impact. In The Great Facilitator: Reflections on the Contributions of Joseph F. Hair, Jr. to Marketing and Business Research (pp. 121-130). Cham: Springer International Publishing.
Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
Camilleri, M. A. (2020). The online users’ perceptions toward electronic government services. Journal of Information, Communication and Ethics in Society, 18(2), 221-235.
Campisi, J., Folan, D., Diehl, G., Kable, T., & Rademeyer, C. (2015). Social media users have different experiences, moti-vations, and quality of life. Psychiatry Research, 228(3), 774-780.
Chawla, D., & Joshi, H. (2020). The moderating role of gender and age in the adoption of mobile wallet. foresight, 22(4), 483-504.
Chuang, S. H., Lin, S., Chang, T. C., & Kaewmeesri, R. (2017). Behavioral intention of using social networking site: A comparative study of Taiwanese and Thai Facebook users. International Journal of Technology and Human Interaction (IJTHI), 13(1), 61-81.
Da Silva, I. N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L. H. B., dos Reis Alves, S. F., da Silva, I. N., ... & dos Reis Alves, S. F. (2017). Artificial neural network architectures and training processes (pp. 21-28). Springer Interna-tional Publishing.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
De Wulf, K., Odekerken-Schröder, G., & Iacobucci, D. (2001). Investments in consumer relationships: A cross-country and cross-industry exploration. Journal of marketing, 65(4), 33-50.
Dixit, R. V., & Prakash, G. (2018). Intentions to use social networking sites (SNS) using technology acceptance model (TAM) an empirical study. Paradigm, 22(1), 65-79.
Dobson, K. S. (1985). The relationship between anxiety and depression. Clinical Psychology Review, 5(4), 307-324.
Dumas, T. M., Maxwell-Smith, M., Davis, J. P., & Giulietti, P. A. (2017). Lying or longing for likes? Narcissism, peer be-longing, loneliness and normative versus deceptive like-seeking on Instagram in emerging adulthood. Computers in human behavior, 71, 1-10.
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of ac-ceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21, 719-734.
Elhai, J. D., Tiamiyu, M., & Weeks, J. (2018). Depression and social anxiety in relation to problematic smartphone use: The prominent role of rumination. Internet Research, 28(2), 315-332.
Faiola, A., Newlon, C., Pfaff, M., & Smyslova, O. (2013). Correlating the effects of flow and telepresence in virtual worlds: Enhancing our understanding of user behavior in game-based learning. Computers in Human Behavior, 29(3), 1113-1121.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Fox, J., & Moreland, J. J. (2015). The dark side of social networking sites: An exploration of the relational and psycholog-ical stressors associated with Facebook use and affordances. Computers in human behavior, 45, 168-176.
Frison, E., & Eggermont, S. (2017). Browsing, posting, and liking on Instagram: The reciprocal relationships between dif-ferent types of Instagram use and adolescents' depressed mood. Cyberpsychology, Behavior, and Social Network-ing, 20(10), 603-609.
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS quarter-ly, 51-90.
Hansen, J. M., Saridakis, G., & Benson, V. (2018). Risk, trust, and the interaction of perceived ease of use and behavioral control in predicting consumers’ use of social media for transactions. Computers in human behavior, 80, 197-206.
Huang, C. (2022). A meta-analysis of the problematic social media use and mental health. International Journal of Social Psychiatry, 68(1), 12-33.
Keles, B., McCrae, N., & Grealish, A. (2020). A systematic review: the influence of social media on depression, anxiety and psychological distress in adolescents. International Journal of Adolescence and Youth, 25(1), 79-93.
Newkirk, H. E., & Lederer, A. L. (2006). The effectiveness of strategic information systems planning under environmental uncertainty. Information & Management, 43(4), 481-501.
Kircaburun, K., & Griffiths, M. D. (2018). Instagram addiction and the Big Five of personality: The mediating role of self-liking. Journal of behavioral addictions, 7(1), 158-170.
Khan, S., Umer, R., Umer, S., & Naqvi, S. (2021). Antecedents of trust in using social media for E-government services: An empirical study in Pakistan. Technology in Society, 64, 101400.
Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publications.
Kwak, K. T., Choi, S. K., & Lee, B. G. (2014). SNS flow, SNS self-disclosure and post hoc interpersonal relations change: Focused on Korean Facebook user. Computers in Human Behavior, 31, 294-304.
Kwateng, K. O., Atiemo, K. A. O., & Appiah, C. (2018). Acceptance and use of mobile banking: an application of UTAUT2. Journal of enterprise information management, 32(1), 118-151.
Kwon, O., & Wen, Y. (2010). An empirical study of the factors affecting social network service use. Computers in human behavior, 26(2), 254-263.
Lee, M., Lee, S. A., Jeong, M., & Oh, H. (2020). Quality of virtual reality and its impacts on behavioral inten-tion. International Journal of Hospitality Management, 90, 102595.
Lee, S. (2018). Investigating antecedents and outcome of telepresence on a hotel’s website. International Journal of Con-temporary Hospitality Management, 30(2), 757-775.
Leong, L. Y., Ooi, K. B., Chong, A. Y. L., & Lin, B. (2013). Modeling the stimulators of the behavioral intention to use mobile entertainment: does gender really matter?. Computers in Human Behavior, 29(5), 2109-2121.
Lu, H. P., & Yang, Y. W. (2014). Toward an understanding of the behavioral intention to use a social networking site: An extension of task-technology fit to social-technology fit. Computers in Human Behavior, 34, 323-332
Li, J. B., Lau, J. T., Feng, L. F., Zhang, X., Li, J. H., Mai, J. C., ... & Mo, P. K. (2022). Associations of intensity and emo-tional connection related to online social networking use on the risk of incident depression among Chinese adoles-cents: A prospective cohort study. Journal of Affective Disorders.
Marino, C., Gini, G., Vieno, A., & Spada, M. M. (2018). The associations between problematic Facebook use, psychologi-cal distress and well-being among adolescents and young adults: A systematic review and meta-analysis. Journal of Affective Disorders, 226, 274-281.
McCord, B., Rodebaugh, T. L., & Levinson, C. A. (2014). Facebook: Social uses and anxiety. Computers in Human Behav-ior, 34, 23-27.
McCrae, N. (2019). The weaponizing of mental health. Journal of Advanced Nursing, 75(4), 709-710.
Merrill, R. A., Cao, C., & Primack, B. A. (2022). Associations between social media use, personality structure, and devel-opment of depression. Journal of Affective Disorders Reports, 10, 100385.
Meshi, D., & Ellithorpe, M. E. (2021). Problematic social media use and social support received in real-life versus on so-cial media: Associations with depression, anxiety and social isolation. Addictive Behaviors, 119, 106949.
Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. Journal of market-ing, 58(3), 20-38.
Morris, M. G., & Venkatesh, V. (2000). Age differences in technology adoption decisions: Implications for a changing work force. Personnel psychology, 53(2), 375-403.
Masa’deh, R. E., AlHadid, I., Abu-Taieh, E., Khwaldeh, S., Alrowwad, A. A., & Alkhawaldeh, R. S. (2022). Factors influ-encing students’ intention to use E-textbooks and their impact on academic achievement in Bilingual environment: An empirical study Jordan. Information, 13(5), 233.
Nah, F. F. H., Eschenbrenner, B., & DeWester, D. (2011). Enhancing brand equity through flow and telepresence: A com-parison of 2D and 3D virtual worlds. MIs Quarterly, 731-747.
O'Connor, T. M., Hingle, M., Chuang, R. J., Gorely, T., Hinkley, T., Jago, R., ... & Thompson, D. A. (2013). Conceptual understanding of screen media parenting: report of a working group. Childhood obesity, 9(s1), S-110.
Ongsakul, V., Ali, F., Wu, C., Duan, Y., Cobanoglu, C., & Ryu, K. (2021). Hotel website quality, performance, telepresence and behavioral intentions. Tourism Review, 76(3), 681-700.
Pallant, J. (2020). SPSS survival manual: A step by step guide to data analysis using IBM SPSS. Routledge.
Pelet, J. É., Ettis, S., & Cowart, K. (2017). Optimal experience of flow enhanced by telepresence: Evidence from social media use. Information & Management, 54(1), 115-128.
Pentina, I., Koh, A. C., & Le, T. T. (2012). Adoption of social networks marketing by SMEs: Exploring the role of social influences and experience in technology acceptance. International Journal of Internet Marketing and Advertis-ing, 7(1), 65-82.
Pfeil, U., Arjan, R., & Zaphiris, P. (2009). Age differences in online social networking–A study of user profiles and the social capital divide among teenagers and older users in MySpace. Computers in Human Behavior, 25(3), 643-654.
Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., Cella, D., & PROMIS Cooperative Group. (2011). Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS®): depression, anxiety, and anger. Assessment, 18(3), 263-283.
Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines.
Puriwat, W., & Tripopsakul, S. (2021). Explaining social media adoption for a business purpose: an application of the UTAUT model. Sustainability, 13(4), 2082.
Saunders, C., Rutkowski, A. F., Genuchten van, M., Vogel, D., & Orrego, J. M. (2011). Virtual space and place: Theory and test. Mis Quarterly, 1079-1098.
Samsudeen, S. N., Selvaratnam, G., & Hayathu Mohamed, A. H. (2022). Intention to use mobile banking services: An Is-lamic banking customers’ perspective from Sri Lanka. Journal of Islamic Marketing, 13(2), 410-433.
Sanz-Blas, S., Buzova, D., & Miquel-Romero, M. J. (2019). From Instagram overuse to instastress and emotional fatigue: the mediation of addiction. Spanish Journal of Marketing-ESIC, 23(2), 143-161.
Seabrook, E. M., Kern, M. L., & Rickard, N. S. (2016). Social networking sites, depression, and anxiety: a systematic re-view. JMIR mental health, 3(4), e5842.
Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach. john wiley & sons.
Siau, K., & Shen, Z. (2003). Building customer trust in mobile commerce. Communications of the ACM, 46(4), 91-94.
Smeda, A., Shiratuddin, M. F., & Wong, K. W. (2017). Measuring the moderating influence of gender on the acceptance of e-book amongst mathematics and statistics students at universities in Libya. Knowledge Management and E-Learning, 9(2), 177-199.
Statista (2022). https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/ (accessed Jan. 17, 2023).
Suki, N. M., Ramayah, T., & Ly, K. K. (2012). Empirical investigation on factors influencing the behavioral intention to use Facebook. Universal Access in the Information Society, 11, 223-231.
Tasin, T., & Habib, M. A. (2022). Computer-Aided Cataract Detection Using Random Forest Classifier. In Proceedings of the International Conference on Big Data, IoT, and Machine Learning: BIM 2021 (pp. 27-38). Springer Singapore.
Tourinho, A., & de Oliveira, B. M. K. (2019). Time flies when you are having fun: Cognitive Absorption and Beliefs about Social Media Usage. AIS Transactions on Replication Research, 5(1), 4.
Trocchia, P. J., & Janda, S. (2000). A phenomenological investigation of Internet usage among older individuals. Journal of consumer marketing, 17(7), 605-616.
Tiwari, P., Tiwari, S. K., & Gupta, A. (2021). Examining the impact of customers’ awareness, risk and trust in m-banking adoption. FIIB Business Review, 10(4), 413-423.
Usman, A., & Okafor, S. (2019). Exploring the relationship between social media and social influence. In Leveraging Computer-Mediated Marketing Environments (pp. 83-103). IGI Global.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the uni-fied theory of acceptance and use of technology. MIS quarterly, 157-178.
WHO, 2017. https://www.who.int/publications/i/item/depression-global-health-estimates (accessed Jan. 02, 2023).
Xue, Y., Dong, Y., Luo, M., Mo, D., Dong, W., Zhang, Z., & Liang, H. (2018). Investigating the impact of mobile SNS ad-diction on individual’s self-rated health. Internet Research.
Yang, Q., & Gong, X. (2021). The engagement–addiction dilemma: an empirical evaluation of mobile user interface and mobile game affordance. Internet Research.
Yao, W., & Li, L. (2014). A new regression model: modal linear regression. Scandinavian Journal of Statistics, 41(3), 656-671.
Zaphiris, P., Kurniawan, S., & Ghiawadwala, M. (2007). A systematic approach to the development of research-based web design guidelines for older people. Universal Access in the information Society, 6, 59-75.
Abu-Taieh, E. M., AlHadid, I., Masa’deh, R. E., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. A. (2022b). Factors Affecting the Use of Social Networks and Its Effect on Anxiety and Depression among Parents and Their Children: Predictors Using ML, SEM and Extended TAM. International Journal of Environmental Research and Public Health, 19(21), 13764.
Abu-Taieh, E. M., AlHadid, I., Abu-Tayeh, S., Masa’deh, R. E., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. A. (2022c). Continued intention to use of M-Banking in Jordan by integrating UTAUT, TPB, TAM and service quality with ML. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 120.
Abu-Taieh, E., AlHadid, I., Masa’deh, R. E., Alkhawaldeh, R. S., Khwaldeh, S., & Alrowwad, A. A. (2022d). Factors influ-encing YouTube as a learning tool and its influence on academic achievement in a bilingual environment using ex-tended information adoption model (IAM) with ML prediction—Jordan case study. Applied Sciences, 12(12), 5856.
Alalwan, A. A., Baabdullah, A. M., Rana, N. P., Tamilmani, K., & Dwivedi, Y. K. (2018). Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust. Technology in Socie-ty, 55, 100-110.
Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., Lal, B., & Williams, M. D. (2015). Consumer adoption of Internet banking in Jordan: Examining the role of hedonic motivation, habit, self-efficacy and trust. Journal of Financial Services Market-ing, 20, 145-157
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99-110
AlHadid, I., Abu-Taieh, E., Alkhawaldeh, R. S., Khwaldeh, S., Masa’deh, R. E., Kaabneh, K., & Alrowwad, A. A. (2022). Predictors for E-Government Adoption of SANAD App Services Integrating UTAUT, TPB, TAM, Trust, and Perceived Risk. International Journal of Environmental Research and Public Health, 19(14), 8281.
Alkhawaldeh, R. S. (2021). Arabic (Indian) digit handwritten recognition using recurrent transfer deep architecture. Soft Computing, 25(4), 3131-3141.
Alkhawaldeh, R. S., Alawida, M., Alshdaifat, N. F. F., Alma’aitah, W. Z. A., & Almasri, A. (2022). Ensemble deep trans-fer learning model for Arabic (Indian) handwritten digit recognition. Neural Computing and Applications, 34(1), 705-719.
Animesh, A., Pinsonneault, A., Yang, S. B., & Oh, W. (2011). An odyssey into virtual worlds: exploring the impacts of technological and spatial environments on intention to purchase virtual products. Mis Quarterly, 789-810.
Baabdullah, A. M. (2018). Consumer adoption of Mobile Social Network Games (M-SNGs) in Saudi Arabia: The role of social influence, hedonic motivation and trust. Technology in society, 53, 91-102.
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., & Patil, P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International journal of information management, 44, 38-52.
Bashir, I., & Madhavaiah, C. (2015). Consumer attitude and behavioural intention towards Internet banking adoption in India. Journal of Indian Business Research, 7(1), 67-102.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing sci-ence, 16, 74-94.
Blank, G., & Lutz, C. (2017). Representativeness of social media in great britain: investigating Facebook, Linkedin, Twit-ter, Pinterest, Google+, and Instagram. American Behavioral Scientist, 61(7), 741-756.
Black, W., & Babin, B. J. (2019). Multivariate data analysis: Its approach, evolution, and impact. In The Great Facilitator: Reflections on the Contributions of Joseph F. Hair, Jr. to Marketing and Business Research (pp. 121-130). Cham: Springer International Publishing.
Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
Camilleri, M. A. (2020). The online users’ perceptions toward electronic government services. Journal of Information, Communication and Ethics in Society, 18(2), 221-235.
Campisi, J., Folan, D., Diehl, G., Kable, T., & Rademeyer, C. (2015). Social media users have different experiences, moti-vations, and quality of life. Psychiatry Research, 228(3), 774-780.
Chawla, D., & Joshi, H. (2020). The moderating role of gender and age in the adoption of mobile wallet. foresight, 22(4), 483-504.
Chuang, S. H., Lin, S., Chang, T. C., & Kaewmeesri, R. (2017). Behavioral intention of using social networking site: A comparative study of Taiwanese and Thai Facebook users. International Journal of Technology and Human Interaction (IJTHI), 13(1), 61-81.
Da Silva, I. N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L. H. B., dos Reis Alves, S. F., da Silva, I. N., ... & dos Reis Alves, S. F. (2017). Artificial neural network architectures and training processes (pp. 21-28). Springer Interna-tional Publishing.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
De Wulf, K., Odekerken-Schröder, G., & Iacobucci, D. (2001). Investments in consumer relationships: A cross-country and cross-industry exploration. Journal of marketing, 65(4), 33-50.
Dixit, R. V., & Prakash, G. (2018). Intentions to use social networking sites (SNS) using technology acceptance model (TAM) an empirical study. Paradigm, 22(1), 65-79.
Dobson, K. S. (1985). The relationship between anxiety and depression. Clinical Psychology Review, 5(4), 307-324.
Dumas, T. M., Maxwell-Smith, M., Davis, J. P., & Giulietti, P. A. (2017). Lying or longing for likes? Narcissism, peer be-longing, loneliness and normative versus deceptive like-seeking on Instagram in emerging adulthood. Computers in human behavior, 71, 1-10.
Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of ac-ceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21, 719-734.
Elhai, J. D., Tiamiyu, M., & Weeks, J. (2018). Depression and social anxiety in relation to problematic smartphone use: The prominent role of rumination. Internet Research, 28(2), 315-332.
Faiola, A., Newlon, C., Pfaff, M., & Smyslova, O. (2013). Correlating the effects of flow and telepresence in virtual worlds: Enhancing our understanding of user behavior in game-based learning. Computers in Human Behavior, 29(3), 1113-1121.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Fox, J., & Moreland, J. J. (2015). The dark side of social networking sites: An exploration of the relational and psycholog-ical stressors associated with Facebook use and affordances. Computers in human behavior, 45, 168-176.
Frison, E., & Eggermont, S. (2017). Browsing, posting, and liking on Instagram: The reciprocal relationships between dif-ferent types of Instagram use and adolescents' depressed mood. Cyberpsychology, Behavior, and Social Network-ing, 20(10), 603-609.
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS quarter-ly, 51-90.
Hansen, J. M., Saridakis, G., & Benson, V. (2018). Risk, trust, and the interaction of perceived ease of use and behavioral control in predicting consumers’ use of social media for transactions. Computers in human behavior, 80, 197-206.
Huang, C. (2022). A meta-analysis of the problematic social media use and mental health. International Journal of Social Psychiatry, 68(1), 12-33.
Keles, B., McCrae, N., & Grealish, A. (2020). A systematic review: the influence of social media on depression, anxiety and psychological distress in adolescents. International Journal of Adolescence and Youth, 25(1), 79-93.
Newkirk, H. E., & Lederer, A. L. (2006). The effectiveness of strategic information systems planning under environmental uncertainty. Information & Management, 43(4), 481-501.
Kircaburun, K., & Griffiths, M. D. (2018). Instagram addiction and the Big Five of personality: The mediating role of self-liking. Journal of behavioral addictions, 7(1), 158-170.
Khan, S., Umer, R., Umer, S., & Naqvi, S. (2021). Antecedents of trust in using social media for E-government services: An empirical study in Pakistan. Technology in Society, 64, 101400.
Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publications.
Kwak, K. T., Choi, S. K., & Lee, B. G. (2014). SNS flow, SNS self-disclosure and post hoc interpersonal relations change: Focused on Korean Facebook user. Computers in Human Behavior, 31, 294-304.
Kwateng, K. O., Atiemo, K. A. O., & Appiah, C. (2018). Acceptance and use of mobile banking: an application of UTAUT2. Journal of enterprise information management, 32(1), 118-151.
Kwon, O., & Wen, Y. (2010). An empirical study of the factors affecting social network service use. Computers in human behavior, 26(2), 254-263.
Lee, M., Lee, S. A., Jeong, M., & Oh, H. (2020). Quality of virtual reality and its impacts on behavioral inten-tion. International Journal of Hospitality Management, 90, 102595.
Lee, S. (2018). Investigating antecedents and outcome of telepresence on a hotel’s website. International Journal of Con-temporary Hospitality Management, 30(2), 757-775.
Leong, L. Y., Ooi, K. B., Chong, A. Y. L., & Lin, B. (2013). Modeling the stimulators of the behavioral intention to use mobile entertainment: does gender really matter?. Computers in Human Behavior, 29(5), 2109-2121.
Lu, H. P., & Yang, Y. W. (2014). Toward an understanding of the behavioral intention to use a social networking site: An extension of task-technology fit to social-technology fit. Computers in Human Behavior, 34, 323-332
Li, J. B., Lau, J. T., Feng, L. F., Zhang, X., Li, J. H., Mai, J. C., ... & Mo, P. K. (2022). Associations of intensity and emo-tional connection related to online social networking use on the risk of incident depression among Chinese adoles-cents: A prospective cohort study. Journal of Affective Disorders.
Marino, C., Gini, G., Vieno, A., & Spada, M. M. (2018). The associations between problematic Facebook use, psychologi-cal distress and well-being among adolescents and young adults: A systematic review and meta-analysis. Journal of Affective Disorders, 226, 274-281.
McCord, B., Rodebaugh, T. L., & Levinson, C. A. (2014). Facebook: Social uses and anxiety. Computers in Human Behav-ior, 34, 23-27.
McCrae, N. (2019). The weaponizing of mental health. Journal of Advanced Nursing, 75(4), 709-710.
Merrill, R. A., Cao, C., & Primack, B. A. (2022). Associations between social media use, personality structure, and devel-opment of depression. Journal of Affective Disorders Reports, 10, 100385.
Meshi, D., & Ellithorpe, M. E. (2021). Problematic social media use and social support received in real-life versus on so-cial media: Associations with depression, anxiety and social isolation. Addictive Behaviors, 119, 106949.
Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. Journal of market-ing, 58(3), 20-38.
Morris, M. G., & Venkatesh, V. (2000). Age differences in technology adoption decisions: Implications for a changing work force. Personnel psychology, 53(2), 375-403.
Masa’deh, R. E., AlHadid, I., Abu-Taieh, E., Khwaldeh, S., Alrowwad, A. A., & Alkhawaldeh, R. S. (2022). Factors influ-encing students’ intention to use E-textbooks and their impact on academic achievement in Bilingual environment: An empirical study Jordan. Information, 13(5), 233.
Nah, F. F. H., Eschenbrenner, B., & DeWester, D. (2011). Enhancing brand equity through flow and telepresence: A com-parison of 2D and 3D virtual worlds. MIs Quarterly, 731-747.
O'Connor, T. M., Hingle, M., Chuang, R. J., Gorely, T., Hinkley, T., Jago, R., ... & Thompson, D. A. (2013). Conceptual understanding of screen media parenting: report of a working group. Childhood obesity, 9(s1), S-110.
Ongsakul, V., Ali, F., Wu, C., Duan, Y., Cobanoglu, C., & Ryu, K. (2021). Hotel website quality, performance, telepresence and behavioral intentions. Tourism Review, 76(3), 681-700.
Pallant, J. (2020). SPSS survival manual: A step by step guide to data analysis using IBM SPSS. Routledge.
Pelet, J. É., Ettis, S., & Cowart, K. (2017). Optimal experience of flow enhanced by telepresence: Evidence from social media use. Information & Management, 54(1), 115-128.
Pentina, I., Koh, A. C., & Le, T. T. (2012). Adoption of social networks marketing by SMEs: Exploring the role of social influences and experience in technology acceptance. International Journal of Internet Marketing and Advertis-ing, 7(1), 65-82.
Pfeil, U., Arjan, R., & Zaphiris, P. (2009). Age differences in online social networking–A study of user profiles and the social capital divide among teenagers and older users in MySpace. Computers in Human Behavior, 25(3), 643-654.
Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., Cella, D., & PROMIS Cooperative Group. (2011). Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS®): depression, anxiety, and anger. Assessment, 18(3), 263-283.
Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines.
Puriwat, W., & Tripopsakul, S. (2021). Explaining social media adoption for a business purpose: an application of the UTAUT model. Sustainability, 13(4), 2082.
Saunders, C., Rutkowski, A. F., Genuchten van, M., Vogel, D., & Orrego, J. M. (2011). Virtual space and place: Theory and test. Mis Quarterly, 1079-1098.
Samsudeen, S. N., Selvaratnam, G., & Hayathu Mohamed, A. H. (2022). Intention to use mobile banking services: An Is-lamic banking customers’ perspective from Sri Lanka. Journal of Islamic Marketing, 13(2), 410-433.
Sanz-Blas, S., Buzova, D., & Miquel-Romero, M. J. (2019). From Instagram overuse to instastress and emotional fatigue: the mediation of addiction. Spanish Journal of Marketing-ESIC, 23(2), 143-161.
Seabrook, E. M., Kern, M. L., & Rickard, N. S. (2016). Social networking sites, depression, and anxiety: a systematic re-view. JMIR mental health, 3(4), e5842.
Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach. john wiley & sons.
Siau, K., & Shen, Z. (2003). Building customer trust in mobile commerce. Communications of the ACM, 46(4), 91-94.
Smeda, A., Shiratuddin, M. F., & Wong, K. W. (2017). Measuring the moderating influence of gender on the acceptance of e-book amongst mathematics and statistics students at universities in Libya. Knowledge Management and E-Learning, 9(2), 177-199.
Statista (2022). https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/ (accessed Jan. 17, 2023).
Suki, N. M., Ramayah, T., & Ly, K. K. (2012). Empirical investigation on factors influencing the behavioral intention to use Facebook. Universal Access in the Information Society, 11, 223-231.
Tasin, T., & Habib, M. A. (2022). Computer-Aided Cataract Detection Using Random Forest Classifier. In Proceedings of the International Conference on Big Data, IoT, and Machine Learning: BIM 2021 (pp. 27-38). Springer Singapore.
Tourinho, A., & de Oliveira, B. M. K. (2019). Time flies when you are having fun: Cognitive Absorption and Beliefs about Social Media Usage. AIS Transactions on Replication Research, 5(1), 4.
Trocchia, P. J., & Janda, S. (2000). A phenomenological investigation of Internet usage among older individuals. Journal of consumer marketing, 17(7), 605-616.
Tiwari, P., Tiwari, S. K., & Gupta, A. (2021). Examining the impact of customers’ awareness, risk and trust in m-banking adoption. FIIB Business Review, 10(4), 413-423.
Usman, A., & Okafor, S. (2019). Exploring the relationship between social media and social influence. In Leveraging Computer-Mediated Marketing Environments (pp. 83-103). IGI Global.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the uni-fied theory of acceptance and use of technology. MIS quarterly, 157-178.
WHO, 2017. https://www.who.int/publications/i/item/depression-global-health-estimates (accessed Jan. 02, 2023).
Xue, Y., Dong, Y., Luo, M., Mo, D., Dong, W., Zhang, Z., & Liang, H. (2018). Investigating the impact of mobile SNS ad-diction on individual’s self-rated health. Internet Research.
Yang, Q., & Gong, X. (2021). The engagement–addiction dilemma: an empirical evaluation of mobile user interface and mobile game affordance. Internet Research.
Yao, W., & Li, L. (2014). A new regression model: modal linear regression. Scandinavian Journal of Statistics, 41(3), 656-671.
Zaphiris, P., Kurniawan, S., & Ghiawadwala, M. (2007). A systematic approach to the development of research-based web design guidelines for older people. Universal Access in the information Society, 6, 59-75.