How to cite this paper
Mathew, M & Thomas, J. (2019). Interval valued multi criteria decision making methods for the selection of flexible manufacturing system.International Journal of Data and Network Science, 3(4), 349-358.
Refrences
Chen, F.D., Zhang, X., Kang, F., Fan, Z.P., & Chen, X. (2010). A method for interval multiple attribute decision making with loss aversion. In Information Science and Management Engineering (ISME), 2010 International Conference of (Vol. 1, pp. 453-456).
Dymova, L., Sevastjanov, P. & Tikhonenko, A. (2013). A direct interval extension of TOPSIS method. Expert Systems with Applications, 40, 4841-4847.
Hafezalkotob, A., & Hafezalkotob, A. (2017). Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection. Journal of Indus-trial Engineering International, 13(2), 181-198.
Hafezalkotob, A. & Hafezalkotob, A. (2017). Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Engineering Applications of Artificial Intelligence, 57, 184-196.
Jahanshahloo, G. R., Khodabakhshi, M., Lotfi, F. H., & Goudarzi, M. M. (2011). A cross-efficiency model based on super-efficiency for ranking units through the TOPSIS approach and its extension to the interval case. Mathematical and Computer Modelling, 53(9-10), 1946-1955.
Jahanshahloo, G. R., Lotfi, F. H., & Davoodi, A. R. (2009). Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Mathematical and Computer Modelling, 49(5-6), 1137-1142.
Jahanshahloo, G. R., Lotfi, F. H., & Izadikhah, M. (2006). An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied mathematics and computation, 175(2), 1375-1384.
Karande, P., & Chakraborty, S. (2013). Evaluation and selection of flexible manufacturing systems us-ing MACBETH method. International Journal of Services and Operations Management, 16(1), 123-144.
Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451..
Keshavarz Ghorabaee, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combi-ative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation & Economic Cybernetics Studies & Research, 50(3).
Kracka, M., & Zavadskas, E. K. (2013). Panel building refurbishment elements effective selection by applying multiple-criteria methods. International Journal of Strategic Property Management, 17(2), 210-219.
Kulak, O., & Kahraman, C. (2005). Multi-attribute comparison of advanced manufacturing systems us-ing fuzzy vs. crisp axiomatic design approach. International Journal of Production Economics, 95(3), 415-424.
Maniya, K. D., & Bhatt, M. G. (2011). The selection of flexible manufacturing system using preference selection index method. International Journal of Industrial and Systems Engineering, 9(3), 330-349.
Mathew, M., & Sahu, S. (2018). Comparison of new multi-criteria decision making methods for materi-al handling equipment selection. Management Science Letters, 8(3), 139-150.
Pan, J., Teklu, Y., Rahman, S., & de Castro, A. (2000). An interval-based MADM approach to the identification of candidate alternatives in strategic resource planning. IEEE Transactions on Power Systems, 15(4), 1441-1446.
Rao, R. V., & Parnichkun, M. (2009). Flexible manufacturing system selection using a combinatorial mathematics-based decision-making method. International Journal of Production Research, 47(24), 6981-6998.
Rao, R. V., & Singh, D. (2011). Evaluating flexible manufacturing systems using Euclidean distance-based integrated approach. International Journal of Decision Sciences, Risk and Management, 3(1-2), 32-53.
Sayadi, M. K., Heydari, M., & Shahanaghi, K. (2009). Extension of VIKOR method for decision mak-ing problem with interval numbers. Applied Mathematical Modelling, 33(5), 2257-2262.
Sayyadi, M., & Makui, A. (2012). A new view to uncertainty in Electre III method by introducing in-terval numbers. Decision Science Letters, 1(1), 33-38.
Stanujkic, D., Magdalinovic, N., Milanovic, D., Magdalinovic, S., & Popovic, G. (2014). An efficient and simple multiple criteria model for a grinding circuit selection based on MOORA meth-od. Informatica, 25(1), 73-93.
Stanujkic, D., Zavadskas, E. K., Ghorabaee, M. K., & Turskis, Z. (2017). An extension of the EDAS method based on the use of interval grey numbers. Studies in Informatics and Control, 26(1), 5-12.
Tsaur, R. C. (2011). Decision risk analysis for an interval TOPSIS method. Applied Mathematics and Computation, 218(8), 4295-4304.
Ye, F., & Li, Y. N. (2009). Group multi-attribute decision model to partner selection in the formation of virtual enterprise under incomplete information. Expert Systems with Applications, 36(5), 9350-9357.
Dymova, L., Sevastjanov, P. & Tikhonenko, A. (2013). A direct interval extension of TOPSIS method. Expert Systems with Applications, 40, 4841-4847.
Hafezalkotob, A., & Hafezalkotob, A. (2017). Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection. Journal of Indus-trial Engineering International, 13(2), 181-198.
Hafezalkotob, A. & Hafezalkotob, A. (2017). Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Engineering Applications of Artificial Intelligence, 57, 184-196.
Jahanshahloo, G. R., Khodabakhshi, M., Lotfi, F. H., & Goudarzi, M. M. (2011). A cross-efficiency model based on super-efficiency for ranking units through the TOPSIS approach and its extension to the interval case. Mathematical and Computer Modelling, 53(9-10), 1946-1955.
Jahanshahloo, G. R., Lotfi, F. H., & Davoodi, A. R. (2009). Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Mathematical and Computer Modelling, 49(5-6), 1137-1142.
Jahanshahloo, G. R., Lotfi, F. H., & Izadikhah, M. (2006). An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied mathematics and computation, 175(2), 1375-1384.
Karande, P., & Chakraborty, S. (2013). Evaluation and selection of flexible manufacturing systems us-ing MACBETH method. International Journal of Services and Operations Management, 16(1), 123-144.
Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451..
Keshavarz Ghorabaee, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combi-ative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation & Economic Cybernetics Studies & Research, 50(3).
Kracka, M., & Zavadskas, E. K. (2013). Panel building refurbishment elements effective selection by applying multiple-criteria methods. International Journal of Strategic Property Management, 17(2), 210-219.
Kulak, O., & Kahraman, C. (2005). Multi-attribute comparison of advanced manufacturing systems us-ing fuzzy vs. crisp axiomatic design approach. International Journal of Production Economics, 95(3), 415-424.
Maniya, K. D., & Bhatt, M. G. (2011). The selection of flexible manufacturing system using preference selection index method. International Journal of Industrial and Systems Engineering, 9(3), 330-349.
Mathew, M., & Sahu, S. (2018). Comparison of new multi-criteria decision making methods for materi-al handling equipment selection. Management Science Letters, 8(3), 139-150.
Pan, J., Teklu, Y., Rahman, S., & de Castro, A. (2000). An interval-based MADM approach to the identification of candidate alternatives in strategic resource planning. IEEE Transactions on Power Systems, 15(4), 1441-1446.
Rao, R. V., & Parnichkun, M. (2009). Flexible manufacturing system selection using a combinatorial mathematics-based decision-making method. International Journal of Production Research, 47(24), 6981-6998.
Rao, R. V., & Singh, D. (2011). Evaluating flexible manufacturing systems using Euclidean distance-based integrated approach. International Journal of Decision Sciences, Risk and Management, 3(1-2), 32-53.
Sayadi, M. K., Heydari, M., & Shahanaghi, K. (2009). Extension of VIKOR method for decision mak-ing problem with interval numbers. Applied Mathematical Modelling, 33(5), 2257-2262.
Sayyadi, M., & Makui, A. (2012). A new view to uncertainty in Electre III method by introducing in-terval numbers. Decision Science Letters, 1(1), 33-38.
Stanujkic, D., Magdalinovic, N., Milanovic, D., Magdalinovic, S., & Popovic, G. (2014). An efficient and simple multiple criteria model for a grinding circuit selection based on MOORA meth-od. Informatica, 25(1), 73-93.
Stanujkic, D., Zavadskas, E. K., Ghorabaee, M. K., & Turskis, Z. (2017). An extension of the EDAS method based on the use of interval grey numbers. Studies in Informatics and Control, 26(1), 5-12.
Tsaur, R. C. (2011). Decision risk analysis for an interval TOPSIS method. Applied Mathematics and Computation, 218(8), 4295-4304.
Ye, F., & Li, Y. N. (2009). Group multi-attribute decision model to partner selection in the formation of virtual enterprise under incomplete information. Expert Systems with Applications, 36(5), 9350-9357.