How to cite this paper
Chakule, R & Chaudhari, S. (2018). Experimental study of hardness effects on surface roughness for nanofluid minimum quantity lubrication (NanoMQL) technique using Jaya algorithm.International Journal of Data and Network Science, 2(3), 71-78.
Refrences
Brinksmeier, E., Meyer, D., Huesmann-Cordes, A.G., & Herrmann, C. (2015). Metal working fluids-Mechanisms and performance, CIRP Annals, 64 (2), 605-628.
Chakule, R.R., Chaudhari, S.S., & Talmale, P.S. (2017). Evaluation of the effects of machining parame-ters on MQL based surface grinding process using response surface methodology. Journal of Me-chanical Science and Technology, 31(8), 3907-3916.
Godson, L., Raja, B., Mohan Lal, D., & Wongwises, S. (2010). Enhancement of heat transfer using nanouids- A overview. Renewable and Sustainable Energy Reviews, 14, 629-641.
Gupta, M.K., Sood, P.K., & Sharma, V.S. (2016). Optimization of machining parameters and cutting fluids during nanofluid based minimum quantity lubrication turning of titanium alloy by using evolu-tionary techniques. Journal of Cleaner Production, 135, 1276-1288.
Huang, X., Ren, Y., Jiang, W., He, Z., & Deng, Z. (2017). Investigation on grind-hardening annealed AISI5140 steel with minimal quantity lubrication. International Journal Advanced Manufacturing Technology, 89 (1–4), 1069–1077.
Hwang, Y.K., & Lee, C.M. (2010). Surface roughness and cutting force prediction in MQL and wet turning process of AISI 1045 using design of experiments. Journal of Mechanical Science and Tech-nology, 24(8), 1669-1677.
Kalita, P., Malshe, A.P., Arun Kumar, S., Yoganath, V.G., & Gurumurthy, T. (2012). Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubri-cants. Journal of Manufacturing Processes, 14(2), 160-166.
Kim, H-J., Seo, K-J., Kang, K.H., & Kim, D-E. (2016). Nano-Lubrication: A Review. International Journal of Precision Engineering and Manufacturing, 17(6), 829-841.
Lee, P.H., Lim, S.H., Lee, S.H., Ko, H.S., & Shin, S.W. (2015). A study on thermal characteristics of micro-scale grinding process using nanofluid minimum quantity lubrication (MQL). Precision Engi-neering and Manufacturing, 16(9), 1899-1909.
Liu, G., Li, C., Zhang, Y., Yang, M., Jia, D., Zhang, X., Guo, S., Li, R., & Zhai, H. (2017). Process pa-rameter optimization and experimental evaluation for nanofluid MQL in grinding Ti-6Al-4V based on grey relational analysis. Materials and Manufacturing Processes. 33(9), 1-14.
Mao, C., Tang, X., Zou, H., Zhou, Z., & Yin, W. (2012). Experimental investigation of surface quality for minimum quantity oil-water lubrication grinding. International Journal of Advanced Manufactur-ing Technology, 59, 93-100.
Mao, C., Zou, H., Huang, X., Zhang, J., & Zhou, Z. (2013). The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication. International Journal of Ad-vanced Manufacturing Technology, 64 (9-12), 1791-1799.
Montgomery, D.C. (2013). Design and Analysis of Experiments, 8th ed. Wiley, New York.
Najiha, M.S., Rahman, M.M., & Yusoff, A.R. (2016). Environmental impacts and hazards associated with metal working fluids and recent advances in the sustainable systems: A review. Renewable and Sustainable Energy Reviews, 60, 1008-1031.
Pai, D., Rao, S., & DSouza, R. (2013). Application of response surface methodology and enhanced non-dominated sorting genetic algorithm for optimization of grinding process. Procedia Engineer-ing, 64, 1199-1208.
Rabiei, F., Rahimi, A.R., Hadad, M.J., & Ashrafijou M. (2015). Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization. Journal of Cleaner Production, 86, 447-460.
Rao, R.V., Rai, D.P., & Balic, J. (2017). A new optimization algorithm for parameter optimization of nano-finishing processes. Scientia Iranica E, 24(2), 868-875.
Rao, R.V., Rai, D.P., Ramkumar, J., & Balic, J. (2016). A new multi-objective Jaya algorithm for opti-mization of modern machining processes. Advances in Production Engineering & Management, 11(4), 271-286.
Rao, R.V. (2017). A Multi-objective algorithm for optimization of modern machining processes. Engi-neering Applications of Artificial Intelligence, 61, 103-125.
Rao, R.V. (2016). Jaya: A simple and new optimization algorithm for solving constrained and uncon-strained optimization problems. International Journal of Industrial Engineering Computations, 7, 19-34.
Setti, D., Sinha, M.K., Ghosh, S., & Rao, P.V. (2015). Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Machine Tools and Manufacture, 88, 237-248.
Sharma, P., Baek, I-H., Cho, T., Park, S., & Lee, K.B. (2011). Enhancement of thermal conductivity of ethylene glycol based silver nanouids. Powder Technology, 208, 7-19.
Sinha, M.K., Madarkar, R., Ghosh, S., & Rao, P.V. (2017). Application of eco-friendly nanofluids dur-ing grinding of Inconel 718 through small quantity lubrication. Journal of Cleaner Production, 141, 1359-1375.
Tawakoli, T., Hadad, M.J., Sadeghi, M.H., Daneshi, A., Stockert, S., & Rasifard, A. (2009). An exper-imental investigation of the effects of workpiece and grinding parameters on minimum quantity lu-brication-MQL grinding. International Journal of Machine Tools and Manufacture, 49(12-13), 924-932.
Wang, Y., Li, C., Zhang, Y., Yang, M., Zhang, X., Zhang, N., & Dai, J. (2017). Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubri-cation grinding with different concentrations of Al2O3 nanofluids. Journal of Cleaner Production, 142(4), 3571-3583.
Yusup, N., Zain, A.M., & Mohd Hashim, S.Z. (2012). Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007-2011). Expert Systems with Applications, 39, 9909-9927.
Zhang, D., Li, C., Zhang, Y., Jia, D., & Zhang, X. (2015). Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding. International Journal of Advanced Manufacturing Technology, 78, 1275-1288.
Zhang, Y., Li, C., Jia, D., Li, B., Wang, Y., Yang, M., Hou, Y., & Zhang, X. (2016). Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology, 232,100-115.
Chakule, R.R., Chaudhari, S.S., & Talmale, P.S. (2017). Evaluation of the effects of machining parame-ters on MQL based surface grinding process using response surface methodology. Journal of Me-chanical Science and Technology, 31(8), 3907-3916.
Godson, L., Raja, B., Mohan Lal, D., & Wongwises, S. (2010). Enhancement of heat transfer using nanouids- A overview. Renewable and Sustainable Energy Reviews, 14, 629-641.
Gupta, M.K., Sood, P.K., & Sharma, V.S. (2016). Optimization of machining parameters and cutting fluids during nanofluid based minimum quantity lubrication turning of titanium alloy by using evolu-tionary techniques. Journal of Cleaner Production, 135, 1276-1288.
Huang, X., Ren, Y., Jiang, W., He, Z., & Deng, Z. (2017). Investigation on grind-hardening annealed AISI5140 steel with minimal quantity lubrication. International Journal Advanced Manufacturing Technology, 89 (1–4), 1069–1077.
Hwang, Y.K., & Lee, C.M. (2010). Surface roughness and cutting force prediction in MQL and wet turning process of AISI 1045 using design of experiments. Journal of Mechanical Science and Tech-nology, 24(8), 1669-1677.
Kalita, P., Malshe, A.P., Arun Kumar, S., Yoganath, V.G., & Gurumurthy, T. (2012). Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubri-cants. Journal of Manufacturing Processes, 14(2), 160-166.
Kim, H-J., Seo, K-J., Kang, K.H., & Kim, D-E. (2016). Nano-Lubrication: A Review. International Journal of Precision Engineering and Manufacturing, 17(6), 829-841.
Lee, P.H., Lim, S.H., Lee, S.H., Ko, H.S., & Shin, S.W. (2015). A study on thermal characteristics of micro-scale grinding process using nanofluid minimum quantity lubrication (MQL). Precision Engi-neering and Manufacturing, 16(9), 1899-1909.
Liu, G., Li, C., Zhang, Y., Yang, M., Jia, D., Zhang, X., Guo, S., Li, R., & Zhai, H. (2017). Process pa-rameter optimization and experimental evaluation for nanofluid MQL in grinding Ti-6Al-4V based on grey relational analysis. Materials and Manufacturing Processes. 33(9), 1-14.
Mao, C., Tang, X., Zou, H., Zhou, Z., & Yin, W. (2012). Experimental investigation of surface quality for minimum quantity oil-water lubrication grinding. International Journal of Advanced Manufactur-ing Technology, 59, 93-100.
Mao, C., Zou, H., Huang, X., Zhang, J., & Zhou, Z. (2013). The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication. International Journal of Ad-vanced Manufacturing Technology, 64 (9-12), 1791-1799.
Montgomery, D.C. (2013). Design and Analysis of Experiments, 8th ed. Wiley, New York.
Najiha, M.S., Rahman, M.M., & Yusoff, A.R. (2016). Environmental impacts and hazards associated with metal working fluids and recent advances in the sustainable systems: A review. Renewable and Sustainable Energy Reviews, 60, 1008-1031.
Pai, D., Rao, S., & DSouza, R. (2013). Application of response surface methodology and enhanced non-dominated sorting genetic algorithm for optimization of grinding process. Procedia Engineer-ing, 64, 1199-1208.
Rabiei, F., Rahimi, A.R., Hadad, M.J., & Ashrafijou M. (2015). Performance improvement of minimum quantity lubrication (MQL) technique in surface grinding by modeling and optimization. Journal of Cleaner Production, 86, 447-460.
Rao, R.V., Rai, D.P., & Balic, J. (2017). A new optimization algorithm for parameter optimization of nano-finishing processes. Scientia Iranica E, 24(2), 868-875.
Rao, R.V., Rai, D.P., Ramkumar, J., & Balic, J. (2016). A new multi-objective Jaya algorithm for opti-mization of modern machining processes. Advances in Production Engineering & Management, 11(4), 271-286.
Rao, R.V. (2017). A Multi-objective algorithm for optimization of modern machining processes. Engi-neering Applications of Artificial Intelligence, 61, 103-125.
Rao, R.V. (2016). Jaya: A simple and new optimization algorithm for solving constrained and uncon-strained optimization problems. International Journal of Industrial Engineering Computations, 7, 19-34.
Setti, D., Sinha, M.K., Ghosh, S., & Rao, P.V. (2015). Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Machine Tools and Manufacture, 88, 237-248.
Sharma, P., Baek, I-H., Cho, T., Park, S., & Lee, K.B. (2011). Enhancement of thermal conductivity of ethylene glycol based silver nanouids. Powder Technology, 208, 7-19.
Sinha, M.K., Madarkar, R., Ghosh, S., & Rao, P.V. (2017). Application of eco-friendly nanofluids dur-ing grinding of Inconel 718 through small quantity lubrication. Journal of Cleaner Production, 141, 1359-1375.
Tawakoli, T., Hadad, M.J., Sadeghi, M.H., Daneshi, A., Stockert, S., & Rasifard, A. (2009). An exper-imental investigation of the effects of workpiece and grinding parameters on minimum quantity lu-brication-MQL grinding. International Journal of Machine Tools and Manufacture, 49(12-13), 924-932.
Wang, Y., Li, C., Zhang, Y., Yang, M., Zhang, X., Zhang, N., & Dai, J. (2017). Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubri-cation grinding with different concentrations of Al2O3 nanofluids. Journal of Cleaner Production, 142(4), 3571-3583.
Yusup, N., Zain, A.M., & Mohd Hashim, S.Z. (2012). Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007-2011). Expert Systems with Applications, 39, 9909-9927.
Zhang, D., Li, C., Zhang, Y., Jia, D., & Zhang, X. (2015). Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding. International Journal of Advanced Manufacturing Technology, 78, 1275-1288.
Zhang, Y., Li, C., Jia, D., Li, B., Wang, Y., Yang, M., Hou, Y., & Zhang, X. (2016). Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology, 232,100-115.