How to cite this paper
Anbarzadeh, E & Mohammadi, B. (2025). Developing an artificial neural network-based tool to predict roughness parameters and cellular viability on surfaces of dental implant fixtures treated with the SLA+Anodizing method.Engineering Solid Mechanics, 13(2), 217-228.
Refrences
Ahmadi, S.M., Campoli, G., Yavari, S.A., Sajadi, B., Wauthlé, R., Schrooten, J., Weinans, H., & Zadpoor, A.A. (2014). Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. Journal of Mechanical Behavior of Biomedical Materials, 34, 106-115. doi: 10.1016/j.jmbbm.2014.02.003
Altuğ, M., Erdem, M., Ozay, C., & Bozkır, O. (2022). Surface roughness of Ti6Al4V after heat treatment evaluated by artificial neural networks. Materials Testing, 58(2), 189-199. doi: 10.3139/120.110844
Anbarzadeh, E., & Mohammadi, B. (2023). Improving the surface roughness of dental implant fixtures by considering the size, angle, and spraying pressure of sandblast particles. Journal of Bionic Engineering, 4, 1-22. doi: 10.1007/s42235-023-00422-1
Anbarzadeh, E., & Mohammadi, B. (2023). Investigation of the effects of sandblasting, acid etching, and anodizing parameters in the SLA+ anodizing on the surface treatment of titanium dental implant fixtures. Physics of Metals and Metallography, 29, 1-4. doi: 10.1134/S0031918X23600793
Anbarzadeh, E., Mohammadi, B., & Azadzaeim, M. (2023). Effects of acid etching parameters on the surface of dental implant fixtures treated by proposed coupled SLA-anodizing process. Journal of Materials Research, 38(12), 4951-4966. doi: 10.1557/s43578-023-01205-4
Belluomo, R., Khodaei, A., & Yavari, S.A. (2023). Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects. Acta Biomaterialia, 156, 234-249. doi: 10.1016/j.actbio.2022.08.042
Cecotto, L., Stapels, D.A., van Kessel, K.P., Croes, M., Lourens, Z., Vogely, H.C., van der Wal, B.C., Van Strijp, J.A., Weinans, H., & Yavari, S.A. (2023). Evaluation of silver bio-functionality in a multicellular in vitro model: towards reduced animal usage in implant-associated infection research. Frontiers in Cellular and Infection Microbiology, 13, 1186936. doi: 10.3389/fcimb.2023.1186936
Chi, Y., An, S., Xu, Y., Liu, M., & Zhang, J. (2021). In vitro biocompatibility of a sandblasted, acid-etched HA composite coating on ultrafine-grained titanium. RSC Advances, 11(9), 6124-6130. doi: 10.1039/D0RA10146J
Costa‐Berenguer, X., García‐García, M., Sánchez‐Torres, A., Sanz‐Alonso, M., Figueiredo, R., & Valmaseda‐Castellón, E. (2018). Effect of implantoplasty on fracture resistance and surface roughness of standard diameter dental implants. Clinical Oral Implants Research, 29(1), 46-54. doi: 10.1111/clr.13037
Garabetyan, J., Malet, J., Kerner, S., Detzen, L., Carra, M.C., & Bouchard, P. (2019). The relationship between dental implant papilla and dental implant mucosa around single‐tooth implant in the esthetic area: A retrospective study. Clinical Oral Implants Research, 30(12), 1229-1237. Doi: 10.1111/clr.13536
Jahanmard, F., Dijkmans, F.M., Majed, A., Vogely, H.C., Van Der Wal, B.C., Stapels, D.A., Ahmadi, S.M., Vermonden, T., & Yavari, S.A. (2020). Toward antibacterial coatings for personalized implants. ACS Biomaterials Science & Engineering, 6(10), 5486-5492. doi: 10.1021/acsbiomaterials.0c00683
Khanlou, H.M., Ang, B.C., Barzani, M.M., Silakhori, M., & Talebian, S. (2015). Prediction and characterization of surface roughness using sandblasting and acid etching process on new non-toxic titanium biomaterial: adaptive-network-based fuzzy inference system. Neural Computing and Applications, 26(7), 1751-1761. doi: 10.1007/s00521-015-1833-z
Khodaei, A., Jahanmard, F., Hosseini, H.M., Bagheri, R., Dabbagh, A., Weinans, H., & Yavari, S.A. (2022). Controlled temperature-mediated curcumin release from magneto-thermal nanocarriers to kill bone tumors. Bioactive Materials, 11, 107-117. 10.1016/j.bioactmat.2021.09.028
Koo, K.T., Khoury, F., Keeve, P.L., Schwarz, F., Ramanauskaite, A., Sculean, A., & Romanos, G. (2019). Implant surface decontamination by surgical treatment of periimplantitis: A literature review. Implant Dentistry, 28(2), 173-176. Doi: 10.1097/ID.0000000000000840
Li, J., Qin, W., Osei Lartey, P., Fu, Y., & Ma, J. (2023). Hydrothermal desulfurization on porous sulfonated CFR-PEEK surface structure used for implant application. Journal of Bionic Engineering, 20(3), 748-761. doi: 10.1007/s42235-022-00276-z
Li, Y., Liu, X., Wang, F., Zhou, W., & Ren, X. (2024). Influence of ultrasonic shot peening on the surface acid etching behavior of pure titanium. Materials Chemistry and Physics, 313, 128720. doi: 10.1016/j.matchemphys.2023.128720
Mohammadi, B., & Anbarzadeh, E. (2022). Evaluation of viability and cell proliferation in bone and gingival on dental implant fixtures with active sandblasted and sandblasted surfaces by the cytotoxicity test method. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 56, 165-172. doi: 10.4028/p-gmmc8m
Mohammadi, B., Abdoli, Z., & Anbarzadeh, E. (2021). Investigation of the effect of abutment angle tolerance on the stress created in the fixture and screw in dental implants using finite element analysis. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 51, 63-76. doi: 10.4028/www.scientific.net/JBBBE.51.63
Park, J.B., Jang, Y.J., Koh, M., Choi, B.K., Kim, K.K., & Ko, Y. (2013). In vitro analysis of the efficacy of ultrasonic scalers and a toothbrush for removing bacteria from resorbable blast material titanium disks. Journal of Periodontology, 84(8), 1191-1198. doi: 10.1902/jop.2012.120369
Sadati Tilebon, S.M., Emamian, S.A., Ramezanpour, H., Yousefi, H., Özcan, M., Naghib, S.M., Zare, Y., & Rhee, K.Y. (2022). Intelligent modeling and optimization of titanium surface etching for dental implant application. Scientific Reports, 12, 7184. doi: 10.1038/s41598-022-11254-0
Sahrmann, P., Schoen, P., Naenni, N., Jung, R.E., Attin, T., & Schmidlin, P.R. (2017). Peri‐implant bone density around implants of different lengths: A 3‐year follow‐up of a randomized clinical trial. Journal of Clinical Periodontology, 44(7), 762-768. doi: 10.1111/prd.12577
Van Oirschot, B.A., Zhang, Y., Alghamdi, H.S., Cordeiro, J.M., Nagay, B.E., Barao, V.A., De Avila, E.D., & Van Den Beucken, J.J. (2022). Surface engineering for dental implantology: favoring tissue responses along the implant. Tissue Engineering Part A, 28(5), 555-572. doi: 10.1089/ten.tea.2021.0230
Weidenbacher, L., Abrishamkar, A., Rottmar, M., Guex, A.G., Maniura-Weber, K., deMello, A.J., Ferguson, S.J., Rossi, R.M., & Fortunato, G. (2017). Electrospraying of microfluidic encapsulated cells for the fabrication of cell-laden electrospun hybrid tissue constructs. Acta Biomaterialia, 64, 137-147. Doi: 10.1016/j.actbio.2017.10.012
Yavari, S.A., van der Stok, J., Chai, Y.C., Wauthle, R., Birgani, Z.T., Habibovic, P., Mulier, M., Schrooten, J., Weinans, H., & Zadpoor, A.A. (2014). Bone regeneration performance of surface-treated porous titanium. Biomaterials, 35(22), 6172-6181. Doi: 10.1016/j.biomaterials.2014.04.054
Altuğ, M., Erdem, M., Ozay, C., & Bozkır, O. (2022). Surface roughness of Ti6Al4V after heat treatment evaluated by artificial neural networks. Materials Testing, 58(2), 189-199. doi: 10.3139/120.110844
Anbarzadeh, E., & Mohammadi, B. (2023). Improving the surface roughness of dental implant fixtures by considering the size, angle, and spraying pressure of sandblast particles. Journal of Bionic Engineering, 4, 1-22. doi: 10.1007/s42235-023-00422-1
Anbarzadeh, E., & Mohammadi, B. (2023). Investigation of the effects of sandblasting, acid etching, and anodizing parameters in the SLA+ anodizing on the surface treatment of titanium dental implant fixtures. Physics of Metals and Metallography, 29, 1-4. doi: 10.1134/S0031918X23600793
Anbarzadeh, E., Mohammadi, B., & Azadzaeim, M. (2023). Effects of acid etching parameters on the surface of dental implant fixtures treated by proposed coupled SLA-anodizing process. Journal of Materials Research, 38(12), 4951-4966. doi: 10.1557/s43578-023-01205-4
Belluomo, R., Khodaei, A., & Yavari, S.A. (2023). Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects. Acta Biomaterialia, 156, 234-249. doi: 10.1016/j.actbio.2022.08.042
Cecotto, L., Stapels, D.A., van Kessel, K.P., Croes, M., Lourens, Z., Vogely, H.C., van der Wal, B.C., Van Strijp, J.A., Weinans, H., & Yavari, S.A. (2023). Evaluation of silver bio-functionality in a multicellular in vitro model: towards reduced animal usage in implant-associated infection research. Frontiers in Cellular and Infection Microbiology, 13, 1186936. doi: 10.3389/fcimb.2023.1186936
Chi, Y., An, S., Xu, Y., Liu, M., & Zhang, J. (2021). In vitro biocompatibility of a sandblasted, acid-etched HA composite coating on ultrafine-grained titanium. RSC Advances, 11(9), 6124-6130. doi: 10.1039/D0RA10146J
Costa‐Berenguer, X., García‐García, M., Sánchez‐Torres, A., Sanz‐Alonso, M., Figueiredo, R., & Valmaseda‐Castellón, E. (2018). Effect of implantoplasty on fracture resistance and surface roughness of standard diameter dental implants. Clinical Oral Implants Research, 29(1), 46-54. doi: 10.1111/clr.13037
Garabetyan, J., Malet, J., Kerner, S., Detzen, L., Carra, M.C., & Bouchard, P. (2019). The relationship between dental implant papilla and dental implant mucosa around single‐tooth implant in the esthetic area: A retrospective study. Clinical Oral Implants Research, 30(12), 1229-1237. Doi: 10.1111/clr.13536
Jahanmard, F., Dijkmans, F.M., Majed, A., Vogely, H.C., Van Der Wal, B.C., Stapels, D.A., Ahmadi, S.M., Vermonden, T., & Yavari, S.A. (2020). Toward antibacterial coatings for personalized implants. ACS Biomaterials Science & Engineering, 6(10), 5486-5492. doi: 10.1021/acsbiomaterials.0c00683
Khanlou, H.M., Ang, B.C., Barzani, M.M., Silakhori, M., & Talebian, S. (2015). Prediction and characterization of surface roughness using sandblasting and acid etching process on new non-toxic titanium biomaterial: adaptive-network-based fuzzy inference system. Neural Computing and Applications, 26(7), 1751-1761. doi: 10.1007/s00521-015-1833-z
Khodaei, A., Jahanmard, F., Hosseini, H.M., Bagheri, R., Dabbagh, A., Weinans, H., & Yavari, S.A. (2022). Controlled temperature-mediated curcumin release from magneto-thermal nanocarriers to kill bone tumors. Bioactive Materials, 11, 107-117. 10.1016/j.bioactmat.2021.09.028
Koo, K.T., Khoury, F., Keeve, P.L., Schwarz, F., Ramanauskaite, A., Sculean, A., & Romanos, G. (2019). Implant surface decontamination by surgical treatment of periimplantitis: A literature review. Implant Dentistry, 28(2), 173-176. Doi: 10.1097/ID.0000000000000840
Li, J., Qin, W., Osei Lartey, P., Fu, Y., & Ma, J. (2023). Hydrothermal desulfurization on porous sulfonated CFR-PEEK surface structure used for implant application. Journal of Bionic Engineering, 20(3), 748-761. doi: 10.1007/s42235-022-00276-z
Li, Y., Liu, X., Wang, F., Zhou, W., & Ren, X. (2024). Influence of ultrasonic shot peening on the surface acid etching behavior of pure titanium. Materials Chemistry and Physics, 313, 128720. doi: 10.1016/j.matchemphys.2023.128720
Mohammadi, B., & Anbarzadeh, E. (2022). Evaluation of viability and cell proliferation in bone and gingival on dental implant fixtures with active sandblasted and sandblasted surfaces by the cytotoxicity test method. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 56, 165-172. doi: 10.4028/p-gmmc8m
Mohammadi, B., Abdoli, Z., & Anbarzadeh, E. (2021). Investigation of the effect of abutment angle tolerance on the stress created in the fixture and screw in dental implants using finite element analysis. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 51, 63-76. doi: 10.4028/www.scientific.net/JBBBE.51.63
Park, J.B., Jang, Y.J., Koh, M., Choi, B.K., Kim, K.K., & Ko, Y. (2013). In vitro analysis of the efficacy of ultrasonic scalers and a toothbrush for removing bacteria from resorbable blast material titanium disks. Journal of Periodontology, 84(8), 1191-1198. doi: 10.1902/jop.2012.120369
Sadati Tilebon, S.M., Emamian, S.A., Ramezanpour, H., Yousefi, H., Özcan, M., Naghib, S.M., Zare, Y., & Rhee, K.Y. (2022). Intelligent modeling and optimization of titanium surface etching for dental implant application. Scientific Reports, 12, 7184. doi: 10.1038/s41598-022-11254-0
Sahrmann, P., Schoen, P., Naenni, N., Jung, R.E., Attin, T., & Schmidlin, P.R. (2017). Peri‐implant bone density around implants of different lengths: A 3‐year follow‐up of a randomized clinical trial. Journal of Clinical Periodontology, 44(7), 762-768. doi: 10.1111/prd.12577
Van Oirschot, B.A., Zhang, Y., Alghamdi, H.S., Cordeiro, J.M., Nagay, B.E., Barao, V.A., De Avila, E.D., & Van Den Beucken, J.J. (2022). Surface engineering for dental implantology: favoring tissue responses along the implant. Tissue Engineering Part A, 28(5), 555-572. doi: 10.1089/ten.tea.2021.0230
Weidenbacher, L., Abrishamkar, A., Rottmar, M., Guex, A.G., Maniura-Weber, K., deMello, A.J., Ferguson, S.J., Rossi, R.M., & Fortunato, G. (2017). Electrospraying of microfluidic encapsulated cells for the fabrication of cell-laden electrospun hybrid tissue constructs. Acta Biomaterialia, 64, 137-147. Doi: 10.1016/j.actbio.2017.10.012
Yavari, S.A., van der Stok, J., Chai, Y.C., Wauthle, R., Birgani, Z.T., Habibovic, P., Mulier, M., Schrooten, J., Weinans, H., & Zadpoor, A.A. (2014). Bone regeneration performance of surface-treated porous titanium. Biomaterials, 35(22), 6172-6181. Doi: 10.1016/j.biomaterials.2014.04.054