How to cite this paper
Citir, A., Toros, S & Ozturk, F. (2024). Investigation of fracture characteristics of titanium/CFRP hybrid composites through experimental and numerical methods.Engineering Solid Mechanics, 12(4), 447-458.
Refrences
Adamos, L., Tsokanas, P., & Loutas, T. (2020). An experimental study of the interfacial fracture behavior of Titanium/CFRP adhesive joints under mode I and mode II fatigue. International Journal of Fatigue, 136, 105586.
Al-Khudairi, O., Hadavinia, H., Waggott, A., Lewis, E., & Little, C. (2015). Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates. Materials & Design (1980-2015), 66, 93-102.
Alabtah, F. G., & Mahdi, E. (2021). The effect of sizing optimization on the interface between high strength steel and fiber reinforced composite. Composite Structures, 266, 113740.
Feito, D. A. (2012). Fracture mechanics of carbon fibre reinforced plastics to Ti-alloy adhesive joints. Department of Mechanical Engineering.
An, Q., Zhong, B., Wang, X., Zhang, H., Sun, X., & Chen, M. (2021). Effects of drilling strategies for CFRP/Ti stacks on static mechanical property and fatigue behavior of open-hole CFRP laminates. Journal of Manufacturing Processes, 64, 409-420.
ASTM. (2014). ASTM D7905/D7905M-14: Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer. American Society for Testing and Materials. https://doi.org/10.1520/D7905
Audoit, J., Rivière, L., Dandurand, J., Lonjon, A., Dantras, E., & Lacabanne, C. (2019). Thermal, mechanical and dielectric behaviour of poly (aryl ether ketone) with low melting temperature. Journal of Thermal Analysis and Calorimetry, 135, 2147-2157.
Bieniaś, J., Dadej, K., & Surowska, B. (2017). Interlaminar fracture toughness of glass and carbon reinforced multidirectional fiber metal laminates. Engineering Fracture Mechanics, 175, 127-145.
Brunner, A. J., Stelzer, S., Pinter, G., & Terrasi, G. P. (2013). Mode II fatigue delamination resistance of advanced fiber-reinforced polymer–matrix laminates: Towards the development of a standardized test procedure. International journal of fatigue, 50, 57-62.
Clarkson, E. (2021). Medium Toughness PAEK thermoplastics Toray (Formerly TenCate) Cetex® TC1225 (LM PAEK) T700GC 12K T1E Unidirectional Tape 145 gsm 34% RC Material Allowables Statistical Analysis Report. National Center for Advanced Materials Performance at Wichita State University, KS, USA.
Cortes, P., & Cantwell, W. J. (2007). The impact properties of high-temperature fiber-metal laminates. Journal of Composite Materials, 41(5), 613-632.
Fink, A., Camanho, P. P., Andrés, J. M., Pfeiffer, E., & Obst, A. (2010). Hybrid CFRP/titanium bolted joints: Performance assessment and application to a spacecraft payload adaptor. Composites Science and Technology, 70(2), 305-317.
Fu, Q., Wu, S., Li, C., Xu, J., & Wang, D. (2022). Delamination and chip breaking mechanism of orthogonal cutting CFRP/Ti6Al4V composite. Journal of Manufacturing Processes, 73, 183-196.
García-González, D., Rodríguez-Millán, M., Vaz-Romero, A., & Arias, A. (2015). High impact velocity on multi-layered composite of polyether ether ketone and aluminium. Composite Interfaces, 22(8), 705-715.
Gray, A. P. (1970). Polymer crystallinity determinations by DSC. Thermochimica Acta, 1(6), 563-579.
Hynes, N. R. J., Vignesh, N. J., Jappes, J. W., Velu, P. S., Barile, C., Ali, M. A., ... & Pruncu, C. I. (2022). Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation. Composites Science and Technology, 221, 109303.
Kazemi, M. E., Bodaghi, M., Shanmugam, L., Fotouhi, M., Yang, L., Zhang, W., & Yang, J. (2021). Developing thermoplastic hybrid titanium composite laminates (HTCLS) at room temperature: Low-velocity impact analyses. Composites Part A: Applied Science and Manufacturing, 149, 106552.
Kong, Y., & Hay, J. N. (2002). The measurement of the crystallinity of polymers by DSC. Polymer, 43(14), 3873-3878.
Koord, J., Völkerink, O., Petersen, E., & Hühne, C. (2023). Effect of low temperature on mode I and mode II interlaminar fracture toughness of CFRP-steel hybrid laminates. Composites Part B: Engineering, 262, 110773.
Lesuer, D. (2000). Experimental Investigations of Material Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum.
Li, X., Zhang, X., Zhang, H., Yang, J., Nia, A. B., & Chai, G. B. (2017). Mechanical behaviors of Ti/CFRP/Ti laminates with different surface treatments of titanium sheets. Composite Structures, 163, 21-31.
Mano, J. F., Ribelles, J. G., Alves, N. M., & Sanchez, M. S. (2005). Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer, 46(19), 8258-8265.
O’masta, M. R., Compton, B. G., Gamble, E. A., Zok, F. W., Deshpande, V. S., & Wadley, H. N. G. (2015). Ballistic impact response of an UHMWPE fiber reinforced laminate encasing of an aluminum-alumina hybrid panel. International Journal of Impact Engineering, 86, 131-144.
Morano, C., Wagih, A., Alfano, M., & Lubineau, G. (2023). Improving performance of composite/metal T-joints by using corrugated aluminum stiffeners. Composite Structures, 307, 116652.
Moreira, R. D. F., de Moura, M. F. S. F., Silva, F. G. A., & Reina, J. P. A. (2022). Mixed-mode I+ II fatigue/fracture characterisation of bi-material Aluminium/CFRP bonded joints. Composites Part B: Engineering, 246, 110240.
Pan, L., Yuan, X., Wang, M., Xue, P., Guo, H., Zhong, L., & Shi, H. (2021). Experimental and numerical simulation study on impact response of TC4/PEEK/Cf laminates under different mass impactors. Composite Structures, 258, 113197.
Park, J. S., Kim, J. H., Park, J. H., & Ko, D. C. (2021). Prediction of the delamination at the steel and CFRP interface of hybrid composite part. Materials, 14(21), 6285.
Qi, X., Wu, X., Gong, Y., Ning, H., Liu, F., Zou, R., ... & Hu, N. (2021). Interlaminar mechanical properties of nano-and short-aramid fiber reinforced glass fiber-aluminum laminates: a comparative study. Journal of Materials Science, 56, 12198-12211.
Quiroga Cortés, L., Caussé, N., Dantras, E., Lonjon, A., & Lacabanne, C. (2016). Morphology and dynamical mechanical properties of poly ether ketone ketone (PEKK) with meta phenyl links. Journal of Applied Polymer Science, 133(19).
Ramaswamy, K., Modi, V., Rao, P. S., Martin, P. P., McCarthy, C. T., & O'Higgins, R. M. (2023). An investigation of the influence of matrix properties and fibre–matrix interface behaviour on the mechanical performance of carbon fibre-reinforced PEKK and PEEK composites. Composites Part A: Applied Science and Manufacturing, 165, 107359.
Richardson, M. J. (1972). Precision differential calorimetry and the heat of fusion of polyethylene. In Journal of Polymer Science Part C: Polymer Symposia (Vol. 38, No. 1, pp. 251-259). New York: Wiley Subscription Services, Inc., A Wiley Company.
Sahoo, P. K., Dattaguru, B., Manjunatha, C. M., & Murthy, C. R. L. (2013). Strength prediction methods for adhesively bonded lap joints between composite–composite/metal adherends. Advances in Modeling and Design of Adhesively Bonded Systems, 219-236.
Sharma, A. P., Velmurugan, R., Shankar, K., & Ha, S. K. (2021). High-velocity impact response of titanium-based fiber metal laminates. Part I: experimental investigations. International Journal of Impact Engineering, 152, 103845.
Song, H. W., Wan, Z. M., Xie, Z. M., & Du, X. W. (2000). Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes. International Journal of Impact Engineering, 24(4), 385-401.
Sun, J., Xu, S., Lu, G., Wang, Q., & Gong, A. (2022). Ballistic impact experiments of titanium-based carbon-fibre/epoxy laminates. Thin-Walled Structures, 179, 109709.
Tan, W., & Falzon, B. G. (2016). Modelling the crush behaviour of thermoplastic composites. Composites Science and Technology, 134, 57-71.
Vlot, A., & Gunnink, J. W. (Eds.). (2011). Fibre metal laminates: an introduction. Springer Science & Business Media.
Wang, J., Ding, H., Jiang, J., & Bi, Y. (2023). Experimental and numerical investigation on test methods for mode II fracture of composite‐titanium adhesively bonded structures. Fatigue & Fracture of Engineering Materials & Structures, 46(10), 3766-3787.
Wang, W., Schultz, J. M., & Hsiao, B. S. (1997). Dynamic study of crystallization-and melting-induced phase separation in PEEK/PEKK blends. Macromolecules, 30(16), 4544-4550.
Yao, Y., Shi, P., Chen, M., Chen, G., Gao, C., Boisse, P., & Zhu, Y. (2022). Experimental and numerical study on Mode I and Mode II interfacial fracture toughness of co-cured steel-CFRP hybrid composites. International Journal of Adhesion and Adhesives, 112, 103030.
Zhu, G., Liao, J., Sun, G., & Li, Q. (2020). Comparative study on metal/CFRP hybrid structures under static and dynamic loading. International Journal of Impact Engineering, 141, 103509.
Al-Khudairi, O., Hadavinia, H., Waggott, A., Lewis, E., & Little, C. (2015). Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates. Materials & Design (1980-2015), 66, 93-102.
Alabtah, F. G., & Mahdi, E. (2021). The effect of sizing optimization on the interface between high strength steel and fiber reinforced composite. Composite Structures, 266, 113740.
Feito, D. A. (2012). Fracture mechanics of carbon fibre reinforced plastics to Ti-alloy adhesive joints. Department of Mechanical Engineering.
An, Q., Zhong, B., Wang, X., Zhang, H., Sun, X., & Chen, M. (2021). Effects of drilling strategies for CFRP/Ti stacks on static mechanical property and fatigue behavior of open-hole CFRP laminates. Journal of Manufacturing Processes, 64, 409-420.
ASTM. (2014). ASTM D7905/D7905M-14: Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer. American Society for Testing and Materials. https://doi.org/10.1520/D7905
Audoit, J., Rivière, L., Dandurand, J., Lonjon, A., Dantras, E., & Lacabanne, C. (2019). Thermal, mechanical and dielectric behaviour of poly (aryl ether ketone) with low melting temperature. Journal of Thermal Analysis and Calorimetry, 135, 2147-2157.
Bieniaś, J., Dadej, K., & Surowska, B. (2017). Interlaminar fracture toughness of glass and carbon reinforced multidirectional fiber metal laminates. Engineering Fracture Mechanics, 175, 127-145.
Brunner, A. J., Stelzer, S., Pinter, G., & Terrasi, G. P. (2013). Mode II fatigue delamination resistance of advanced fiber-reinforced polymer–matrix laminates: Towards the development of a standardized test procedure. International journal of fatigue, 50, 57-62.
Clarkson, E. (2021). Medium Toughness PAEK thermoplastics Toray (Formerly TenCate) Cetex® TC1225 (LM PAEK) T700GC 12K T1E Unidirectional Tape 145 gsm 34% RC Material Allowables Statistical Analysis Report. National Center for Advanced Materials Performance at Wichita State University, KS, USA.
Cortes, P., & Cantwell, W. J. (2007). The impact properties of high-temperature fiber-metal laminates. Journal of Composite Materials, 41(5), 613-632.
Fink, A., Camanho, P. P., Andrés, J. M., Pfeiffer, E., & Obst, A. (2010). Hybrid CFRP/titanium bolted joints: Performance assessment and application to a spacecraft payload adaptor. Composites Science and Technology, 70(2), 305-317.
Fu, Q., Wu, S., Li, C., Xu, J., & Wang, D. (2022). Delamination and chip breaking mechanism of orthogonal cutting CFRP/Ti6Al4V composite. Journal of Manufacturing Processes, 73, 183-196.
García-González, D., Rodríguez-Millán, M., Vaz-Romero, A., & Arias, A. (2015). High impact velocity on multi-layered composite of polyether ether ketone and aluminium. Composite Interfaces, 22(8), 705-715.
Gray, A. P. (1970). Polymer crystallinity determinations by DSC. Thermochimica Acta, 1(6), 563-579.
Hynes, N. R. J., Vignesh, N. J., Jappes, J. W., Velu, P. S., Barile, C., Ali, M. A., ... & Pruncu, C. I. (2022). Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation. Composites Science and Technology, 221, 109303.
Kazemi, M. E., Bodaghi, M., Shanmugam, L., Fotouhi, M., Yang, L., Zhang, W., & Yang, J. (2021). Developing thermoplastic hybrid titanium composite laminates (HTCLS) at room temperature: Low-velocity impact analyses. Composites Part A: Applied Science and Manufacturing, 149, 106552.
Kong, Y., & Hay, J. N. (2002). The measurement of the crystallinity of polymers by DSC. Polymer, 43(14), 3873-3878.
Koord, J., Völkerink, O., Petersen, E., & Hühne, C. (2023). Effect of low temperature on mode I and mode II interlaminar fracture toughness of CFRP-steel hybrid laminates. Composites Part B: Engineering, 262, 110773.
Lesuer, D. (2000). Experimental Investigations of Material Models for Ti-6Al-4V Titanium and 2024-T3 Aluminum.
Li, X., Zhang, X., Zhang, H., Yang, J., Nia, A. B., & Chai, G. B. (2017). Mechanical behaviors of Ti/CFRP/Ti laminates with different surface treatments of titanium sheets. Composite Structures, 163, 21-31.
Mano, J. F., Ribelles, J. G., Alves, N. M., & Sanchez, M. S. (2005). Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer, 46(19), 8258-8265.
O’masta, M. R., Compton, B. G., Gamble, E. A., Zok, F. W., Deshpande, V. S., & Wadley, H. N. G. (2015). Ballistic impact response of an UHMWPE fiber reinforced laminate encasing of an aluminum-alumina hybrid panel. International Journal of Impact Engineering, 86, 131-144.
Morano, C., Wagih, A., Alfano, M., & Lubineau, G. (2023). Improving performance of composite/metal T-joints by using corrugated aluminum stiffeners. Composite Structures, 307, 116652.
Moreira, R. D. F., de Moura, M. F. S. F., Silva, F. G. A., & Reina, J. P. A. (2022). Mixed-mode I+ II fatigue/fracture characterisation of bi-material Aluminium/CFRP bonded joints. Composites Part B: Engineering, 246, 110240.
Pan, L., Yuan, X., Wang, M., Xue, P., Guo, H., Zhong, L., & Shi, H. (2021). Experimental and numerical simulation study on impact response of TC4/PEEK/Cf laminates under different mass impactors. Composite Structures, 258, 113197.
Park, J. S., Kim, J. H., Park, J. H., & Ko, D. C. (2021). Prediction of the delamination at the steel and CFRP interface of hybrid composite part. Materials, 14(21), 6285.
Qi, X., Wu, X., Gong, Y., Ning, H., Liu, F., Zou, R., ... & Hu, N. (2021). Interlaminar mechanical properties of nano-and short-aramid fiber reinforced glass fiber-aluminum laminates: a comparative study. Journal of Materials Science, 56, 12198-12211.
Quiroga Cortés, L., Caussé, N., Dantras, E., Lonjon, A., & Lacabanne, C. (2016). Morphology and dynamical mechanical properties of poly ether ketone ketone (PEKK) with meta phenyl links. Journal of Applied Polymer Science, 133(19).
Ramaswamy, K., Modi, V., Rao, P. S., Martin, P. P., McCarthy, C. T., & O'Higgins, R. M. (2023). An investigation of the influence of matrix properties and fibre–matrix interface behaviour on the mechanical performance of carbon fibre-reinforced PEKK and PEEK composites. Composites Part A: Applied Science and Manufacturing, 165, 107359.
Richardson, M. J. (1972). Precision differential calorimetry and the heat of fusion of polyethylene. In Journal of Polymer Science Part C: Polymer Symposia (Vol. 38, No. 1, pp. 251-259). New York: Wiley Subscription Services, Inc., A Wiley Company.
Sahoo, P. K., Dattaguru, B., Manjunatha, C. M., & Murthy, C. R. L. (2013). Strength prediction methods for adhesively bonded lap joints between composite–composite/metal adherends. Advances in Modeling and Design of Adhesively Bonded Systems, 219-236.
Sharma, A. P., Velmurugan, R., Shankar, K., & Ha, S. K. (2021). High-velocity impact response of titanium-based fiber metal laminates. Part I: experimental investigations. International Journal of Impact Engineering, 152, 103845.
Song, H. W., Wan, Z. M., Xie, Z. M., & Du, X. W. (2000). Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes. International Journal of Impact Engineering, 24(4), 385-401.
Sun, J., Xu, S., Lu, G., Wang, Q., & Gong, A. (2022). Ballistic impact experiments of titanium-based carbon-fibre/epoxy laminates. Thin-Walled Structures, 179, 109709.
Tan, W., & Falzon, B. G. (2016). Modelling the crush behaviour of thermoplastic composites. Composites Science and Technology, 134, 57-71.
Vlot, A., & Gunnink, J. W. (Eds.). (2011). Fibre metal laminates: an introduction. Springer Science & Business Media.
Wang, J., Ding, H., Jiang, J., & Bi, Y. (2023). Experimental and numerical investigation on test methods for mode II fracture of composite‐titanium adhesively bonded structures. Fatigue & Fracture of Engineering Materials & Structures, 46(10), 3766-3787.
Wang, W., Schultz, J. M., & Hsiao, B. S. (1997). Dynamic study of crystallization-and melting-induced phase separation in PEEK/PEKK blends. Macromolecules, 30(16), 4544-4550.
Yao, Y., Shi, P., Chen, M., Chen, G., Gao, C., Boisse, P., & Zhu, Y. (2022). Experimental and numerical study on Mode I and Mode II interfacial fracture toughness of co-cured steel-CFRP hybrid composites. International Journal of Adhesion and Adhesives, 112, 103030.
Zhu, G., Liao, J., Sun, G., & Li, Q. (2020). Comparative study on metal/CFRP hybrid structures under static and dynamic loading. International Journal of Impact Engineering, 141, 103509.