How to cite this paper
Khan, O., Sohu, S., Jamali, M., Ahmed, S & Nagapan, S. (2024). Improving mechanical properties of concrete by using fibrous materials.Engineering Solid Mechanics, 12(4), 437-446.
Refrences
Ahmad, J., González-Lezcano, R. A., Majdi, A., Ben Kahla, N., Deifalla, A. F., & El-Shorbagy, M. A. (2022). Glass fibers reinforced concrete: Overview on mechanical, durability and microstructure analysis. Materials, 15(15), 5111.
Ahmed, H. U., Faraj, R. H., Hilal, N., Mohammed, A. A., & Sherwani, A. F. H. (2021). Use of recycled fibers in concrete composites: A systematic comprehensive review. Composites Part B: Engineering, 215, 108769.
Ahmed, S., Jamali, M. Z., Khoso, S., Azeem, F., & Ansari, A. A. (2022). Assessment of groundwater quality in rural areas of taluka dokri, sindh, pakistan, through physicochemical parameters. International Journal of Energy, Environment and Economics, 30(3), 211-226.
Aksoylu, C., Özkılıç, Y. O., Madenci, E., & Safonov, A. (2022). Compressive behavior of pultruded GFRP boxes with concentric openings strengthened by different composite
Al-Azzawi, A. A. (2016). Mechanical properties of recycled aggregate concrete. Journal of Engineering Application Science, 11(19), 11233-11238.wrappings.
Algburi, A. H., Sheikh, M. N., & Hadi, M. N. (2019). Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete. Frontiers of Structural and Civil Engineering, 13, 998-1006.
Ali, B., Qureshi, L. A., & Khan, S. U. (2020a). Flexural behavior of glass fiber-reinforced recycled aggregate concrete and its impact on the cost and carbon footprint of concrete pavement. Construction and Building Materials, 262, 120820.
Ali, B., Qureshi, L. A., Shah, S. H. A., Rehman, S. U., Hussain, I., & Iqbal, M. (2020b). A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash. Construction and Building Materials, 251, 118980.
Aliha, M. R. M., Razmi, A., & Mansourian, A. (2017). The influence of natural and synthetic fibers on low temperature mixed mode I+ II fracture behavior of warm mix asphalt (WMA) materials. Engineering Fracture Mechanics, 182, 322-336.
Amran, M., Murali, G., Khalid, N. H. A., Fediuk, R., Ozbakkaloglu, T., Lee, Y. H., ... & Lee, Y. Y. (2021). Slag uses in making an ecofriendly and sustainable concrete: A review. Construction and Building Materials, 272, 121942.
Arisoy, B., & Wu, H. C. (2008). Material characteristics of high performance lightweight concrete reinforced with PVA. Construction and building materials, 22(4), 635-645.
Arslan, M. H., Yazman, Ş., Hamad, A. A., Aksoylu, C., Özkılıç, Y. O., & Gemi, L. (2022, May). Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics. In Structures (Vol. 39, pp. 527-542). Elsevier.
Asdollah-Tabar, M., Heidari-Rarani, M., & MohammadAliha, M. R.. (2021). The effect of recycled PET bottles on the fracture toughness of polymer concrete. Composites Communications, 25, 100684.
Askar, M. K., Askar, L. K., Al-Kamaki, Y. S., & Ferhadi, R. (2023). Effects of chopped CFRP fiber on mechanical properties of concrete. Heliyon, 9(3).
Aziz, F. N. A. A., Tan, A. R., Bakar, N. B., & Nasir, N. A. M. (2023, June). Properties of concrete with glass fibre reinforced polymer waste as partial replacement of fine aggregate. In Journal of Physics: Conference Series (Vol. 2521, No. 1, p. 012015). IOP Publishing.
Bai, G., Zhu, C., Liu, C., & Liu, B. (2020). An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. Construction and building materials, 240, 117978.
Bakde, S., Suryawanshi, P., Murkute, S., Bharti, R., Shaw, S. K., & Khan, H. A. (2023). Impacts of fibre and wastage material on the sustainable concrete: A comprehensive review. Materials Today: Proceedings.
Bheel, N., Tafsirojjaman, T., Liu, Y., Awoyera, P., Kumar, A., & Keerio, M. A. (2021). Experimental study on engineering properties of cement concrete reinforced with nylon and jute fibers. Buildings, 11(10), 454.
Chandramouli, K., Srinivasa, R. P., Pannirselvam, N., Seshadri, S. T., & Sravana, P. (2010). Strength properties of glass fiber concrete. ARPN journal of Engineering and Applied sciences, 5(4), 1-6.
Choi, Y., & Yuan, R. L. (2005). Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cement and Concrete Research, 35(8), 1587-1591.
Daneshfar, M., Hassani, A., Aliha, M. R. M., Sadowski, T., & Karimi, A. (2023). Experimental Model for Study of Thickness Effect on Flexural Fatigue Life of Macro-Synthetic-Fiber-Reinforced Concretes. Buildings, 13(3), 642.
Domski, J., Katzer, J., Zakrzewski, M., & Ponikiewski, T. (2017). Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete. Journal of Cleaner Production, 158, 18-28.
Enfedaque, A., Cendón, D., Gálvez, F., & Sánchez-Gálvez, V. (2010). Analysis of glass fiber reinforced cement (GRC) fracture surfaces. Construction and Building Materials, 24(7), 1302-1308.
Fakhri, M., Yousefian, F., Amoosoltani, E., Aliha, M. R. M., & Berto, F. (2021). Combined effects of recycled crumb rubber and silica fume on mechanical properties and mode I fracture toughness of self‐compacting concrete. Fatigue & Fracture of Engineering Materials & Structures, 44(10), 2659-2673.
Fang, Y., Chen, B., & Oderji, S. Y. (2018). Experimental research on magnesium phosphate cement mortar reinforced by glass fiber. Construction and Building Materials, 188, 729-736.
Firda, A., Saggaff, A., Hanafiah, H., & Saloma, S. (2023). Experimental study of artificial lightweight aggregates using coal fly ash and epoxy resin. Engineering Solid Mechanics, 11(4), 369-278.
Gemi, L., Madenci, E., & Özkılıç, Y. O. (2021). Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete. Engineering Structures, 244, 112790.
Golewski, G. L. (2023). The phenomenon of cracking in cement concretes and reinforced concrete structures: the mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection—a review. Buildings, 13(3), 765.
Grzymski, F., Musiał, M., & Trapko, T. (2019). Mechanical properties of fibre reinforced concrete with recycled fibres. Construction and Building Materials, 198, 323-331.
He, J., Kawasaki, S., & Achal, V. (2020). The utilization of agricultural waste as agro-cement in concrete: A review. Sustainability, 12(17), 6971.
Hoseini, S. O., Mousavi, S. R., Sohrabi, M. R., & Ghasemi, M. (2023). Using beam and ENDB specimens to evaluate fracture characteristics of wavy steel fiber‐reinforced self‐compacting concrete containing different coarse aggregate volumes. Fatigue & Fracture of Engineering Materials & Structures, 46(5), 1669-1686.
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., & Ghasemi, M. (2022). Effects of coarse aggregate and wavy steel fiber volumes on the critical stress intensity factors of modes I and III cracks in self-compacting concrete using ENDB specimens. Theoretical and Applied Fracture Mechanics, 121, 103421.
Hussain, S., & Yadav, J. S. (2023). Mechanical and Durability Performances of Alkali-resistant Glass Fiber-reinforced Concrete. Jordan Journal of Civil Engineering, 17(2).
Islam, M. J., Islam, K., Shahjalal, M., Khatun, E., Islam, S., & Razzaque, A. B. (2022). Influence of different types of fibers on the mechanical properties of recycled waste aggregate concrete. Construction and Building Materials, 337, 127577.
Iucolano, F., Liguori, B., & Colella, C. (2013). Fibre-reinforced lime-based mortars: A possible resource for ancient masonry restoration. Construction and Building Materials, 38, 785-789.
Jamali, M. Z., Khoso, S., Soomro, Z., Sohu, S., & Abro, A. F. (2022). Evaluating the suitability of groundwater in pakistan: an analysis of water quality using synthetic pollution index (spi) and water quality index (WQI). International Journal of Energy, Environment and Economics, 30(3), 311-328.
Jamali, M. Z., Solangi, G. S., & Keerio, M. A. (2020). Assessment of Groundwater Quality of Taluka Larkana, Sindh, Pakistan. International Journal of Scientific & Engineering Research, 11(5), 795-797.
Jamali, M. Z., Solangi, G. S., Keerio, M. A., Keerio, J. A., & Bheel, N. (2023). Assessing and mapping the groundwater quality of Taluka Larkana, Sindh, Pakistan, using water quality indices and geospatial tools. International Journal of Environmental Science and Technology, 20(8), 8849-8862.
Ji, X., Ge, Y., Li, M., Wang, L., & Liu, S. (2023). Preparation of carbon fiber conductive concrete and study on its mechanical and heating properties. Journal of Materials Research and Technology, 27, 3029-3040.
Karimi, H. R., Aliha, M. R. M., Ebneabbasi, P., Salehi, S. M., Khedri, E., & Haghighatpour, P. J. (2023). Mode I and mode II fracture toughness and fracture energy of cement concrete containing different percentages of coarse and fine recycled tire rubber granules. Theoretical and Applied Fracture Mechanics, 123, 103722.
Khan, M. B., Waqar, A., Bheel, N., Shafiq, N., Hamah Sor, N., Radu, D., & Benjeddou, O. (2023). Optimization of fresh and mechanical characteristics of carbon fiber-reinforced concrete composites using response surface technique. Buildings, 13(4), 852.
Khan, M. I., Umair, M., Shaker, K., Basit, A., Nawab, Y., & Kashif, M. (2020). Impact of waste fibers on the mechanical performance of concrete composites. The Journal of The Textile Institute, 111(11), 1632-1640.
Khanzadi, M., & Behnood, A. (2009). Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate. Construction and building materials, 23(6), 2183-2188.
Krishna, B. V., & Rao, D. M. K. (2015). A comparative and experimental study on the mechanical properties of various steel and glass fiber reinforced high strength concrete. IRJET, 2, 129-133.
Madenci, E., Özkılıç, Y. O., Aksoylu, C., Asyraf, M. R. M., Syamsir, A., Supian, A. B. M., & Mamaev, N. (2023a). Buckling analysis of CNT-reinforced polymer composite beam using experimental and analytical methods. Materials, 16(2), 614.
Madenci, E., Özkılıç, Y. O., Aksoylu, C., Asyraf, M. R. M., Syamsir, A., Supian, A. B. M., & Elizaveta, B. (2023b). Experimental and analytical investigation of flexural behavior of carbon nanotube reinforced textile based composites. Materials, 16(6), 2222.
Mahadik, S. A., Kamane, S. K., & Lande, A. C. (2014). Effect of steel fibers on compressive and flexural strength of concrete. International Journal of Advanced Structures and Geotechnical Engineering, 3(4), 388-392.
Meddah, M. S., & Bencheikh, M. (2009). Properties of concrete reinforced with different kinds of industrial waste fibre materials. Construction and building materials, 23(10), 3196-3205.
Midhun, M. S., Rao, T. G., & Srikrishna, T. C. (2018). Mechanical and fracture properties of glass fiber reinforced geopolymer concrete. Advances in concrete construction, 6(1), 29.
Mohammadhosseini, H., & Awal, A. S. M. A. (2014). Physical and mechanical properties of concrete containing fibers from industrial carpet waste (Doctoral dissertation, Universiti Teknologi Malaysia).
Mohammadhosseini, H., Awal, A. A., & Yatim, J. B. M. (2017). The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibres. Construction and Building Materials, 100(143), 147-157.
Mousavi, S., Ghasemi, M., & Dehghani, M. (2024). Investigating the fracture toughness of the self compacting concrete using ENDB samples by changing the aggregate size and percent of steel fiber. Engineering Solid Mechanics, 12(1), 17-26.
Murali, G., Prasad, N., Klyuev, S., Fediuk, R., Abid, S. R., Amran, M., & Vatin, N. (2021). Impact resistance of functionally layered two-stage fibrous concrete. Fibers, 9(12), 88.
Najjar, S., Moghaddam, A. M., Sahaf, A., & Aliha, M. R. M. (2020). Low temperature fracture resistance of cement emulsified asphalt mortar under mixed mode I/III loading. Theoretical and Applied Fracture Mechanics, 110, 102800.
Noushini, A., Samali, B., & Vessalas, K. (2013). Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Construction and Building Materials, 49, 374-383.
Özkılıç, Y. O., Gemi, L., Madenci, E., Aksoylu, C., & Kalkan, İ. (2022). Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement. Steel and Composite Structures, An International Journal, 45(2), 193-204.
Pacheco, J., De Brito, J., Chastre, C., & Evangelista, L. (2019). Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates. Construction and Building Materials, 201, 110-120.
Pan, Y., Wu, X., Huang, Z., Wu, G., Sun, S., Ye, H., & Zhang, Z. (2018). A new approach to enhancing interlaminar strength and galvanic corrosion resistance of CFRP/Mg laminates. Composites Part A: Applied Science and Manufacturing, 105, 78-86.
Patra, I., Al-Awsi, G. R. L., Hasan, Y. M., & Almotlaq, S. S. K. (2022). Mechanical properties of concrete containing recycled aggregate from construction waste. Sustainable Energy Technologies and Assessments, 53, 102722.
Prasad, N., & Murali, G. (2021). Exploring the impact performance of functionally-graded preplaced aggregate concrete incorporating steel and polypropylene fibres. Journal of Building Engineering, 35, 102077.
Rahmani, E., Dehestani, M., Beygi, M. H. A., Allahyari, H., & Nikbin, I. M. (2013). On the mechanical properties of concrete containing waste PET particles. Construction and Building Materials, 47, 1302-1308.
Ramezanianpour, A. A., Esmaeili, M., Ghahari, S. A., & Najafi, M. H. (2013). Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Construction and Building Materials, 44, 411-418.
Reis, J. M. L., & Ferreira, A. J. M. (2003). Fracture behavior of glass fiber reinforced polymer concrete. Polymer testing, 22(2), 149-153.
Rooholamini, H., Hassani, A., & Aliha, M. R. M. (2018). Evaluating the effect of macro-synthetic fibre on the mechanical properties of roller-compacted concrete pavement using response surface methodology. Construction and building materials, 159, 517-529.
Shaker, H., Ameri, M., Aliha, M. R. M., & Rooholamini, H. (2023). Evaluating low-temperature fracture toughness of steel slag aggregate-included asphalt mixture using response surface method. Construction and Building Materials, 370, 130647.
Singh, A., Charak, A., Biligiri, K. P., & Pandurangan, V. (2022). Glass and carbon fiber reinforced polymer composite wastes in pervious concrete: Material characterization and lifecycle assessment. Resources, Conservation and Recycling, 182, 106304.
Singh, S., Ransinchung, G. D., & Kumar, P. (2017). An economical processing technique to improve RAP inclusive concrete properties. Construction and Building Materials, 148, 734-747.
Souza, A. B., Ferreira, H. S., Vilela, A. P., Viana, Q. S., Mendes, J. F., & Mendes, R. F. (2021). Study on the feasibility of using agricultural waste in the production of concrete blocks. Journal of Building Engineering, 42, 102491.
Su, C., Wu, Q., Weng, L., & Chang, X. (2019). Experimental investigation of mode I fracture features of steel fiber-reinforced reactive powder concrete using semi-circular bend test. Engineering fracture mechanics, 209, 187-199.
Sugito, S., Alisjahbana, S., & Riyanto, H. (2022). Response surface methodology approach for optimized compressive strength of some mix design concrete aggregates from waste cockle shells and glass powder. Engineering Solid Mechanics, 10(2), 101-112.
Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in Materials, 6, 226.
Torkaman, J., Ashori, A., & Momtazi, A. S. (2014). Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks. Construction and building materials, 50, 432-436.
Wang, Q., Yan, P., Yang, J., & Zhang, B. (2013). Influence of steel slag on mechanical properties and durability of concrete. Construction and Building Materials, 47, 1414-1420.
Weli, S. S., Abbood, I. S., Hasan, K. F., & Jasim, M. A. (2020, July). Effect of steel fibers on the concrete strength grade: a review. In IOP Conference Series: Materials Science and Engineering (Vol. 888, No. 1, p. 012043). IOP Publishing.
Zhang, P., Han, S., Ng, S., & Wang, X. H. (2018). Fiber-reinforced concrete with application in civil engineering. Advances in Civil Engineering, 2018.
Zheng, C., Lou, C., Du, G., Li, X., Liu, Z., & Li, L. (2018). Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate. Results in Physics, 9, 1317-1322.
Ahmed, H. U., Faraj, R. H., Hilal, N., Mohammed, A. A., & Sherwani, A. F. H. (2021). Use of recycled fibers in concrete composites: A systematic comprehensive review. Composites Part B: Engineering, 215, 108769.
Ahmed, S., Jamali, M. Z., Khoso, S., Azeem, F., & Ansari, A. A. (2022). Assessment of groundwater quality in rural areas of taluka dokri, sindh, pakistan, through physicochemical parameters. International Journal of Energy, Environment and Economics, 30(3), 211-226.
Aksoylu, C., Özkılıç, Y. O., Madenci, E., & Safonov, A. (2022). Compressive behavior of pultruded GFRP boxes with concentric openings strengthened by different composite
Al-Azzawi, A. A. (2016). Mechanical properties of recycled aggregate concrete. Journal of Engineering Application Science, 11(19), 11233-11238.wrappings.
Algburi, A. H., Sheikh, M. N., & Hadi, M. N. (2019). Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete. Frontiers of Structural and Civil Engineering, 13, 998-1006.
Ali, B., Qureshi, L. A., & Khan, S. U. (2020a). Flexural behavior of glass fiber-reinforced recycled aggregate concrete and its impact on the cost and carbon footprint of concrete pavement. Construction and Building Materials, 262, 120820.
Ali, B., Qureshi, L. A., Shah, S. H. A., Rehman, S. U., Hussain, I., & Iqbal, M. (2020b). A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash. Construction and Building Materials, 251, 118980.
Aliha, M. R. M., Razmi, A., & Mansourian, A. (2017). The influence of natural and synthetic fibers on low temperature mixed mode I+ II fracture behavior of warm mix asphalt (WMA) materials. Engineering Fracture Mechanics, 182, 322-336.
Amran, M., Murali, G., Khalid, N. H. A., Fediuk, R., Ozbakkaloglu, T., Lee, Y. H., ... & Lee, Y. Y. (2021). Slag uses in making an ecofriendly and sustainable concrete: A review. Construction and Building Materials, 272, 121942.
Arisoy, B., & Wu, H. C. (2008). Material characteristics of high performance lightweight concrete reinforced with PVA. Construction and building materials, 22(4), 635-645.
Arslan, M. H., Yazman, Ş., Hamad, A. A., Aksoylu, C., Özkılıç, Y. O., & Gemi, L. (2022, May). Shear strengthening of reinforced concrete T-beams with anchored and non-anchored CFRP fabrics. In Structures (Vol. 39, pp. 527-542). Elsevier.
Asdollah-Tabar, M., Heidari-Rarani, M., & MohammadAliha, M. R.. (2021). The effect of recycled PET bottles on the fracture toughness of polymer concrete. Composites Communications, 25, 100684.
Askar, M. K., Askar, L. K., Al-Kamaki, Y. S., & Ferhadi, R. (2023). Effects of chopped CFRP fiber on mechanical properties of concrete. Heliyon, 9(3).
Aziz, F. N. A. A., Tan, A. R., Bakar, N. B., & Nasir, N. A. M. (2023, June). Properties of concrete with glass fibre reinforced polymer waste as partial replacement of fine aggregate. In Journal of Physics: Conference Series (Vol. 2521, No. 1, p. 012015). IOP Publishing.
Bai, G., Zhu, C., Liu, C., & Liu, B. (2020). An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. Construction and building materials, 240, 117978.
Bakde, S., Suryawanshi, P., Murkute, S., Bharti, R., Shaw, S. K., & Khan, H. A. (2023). Impacts of fibre and wastage material on the sustainable concrete: A comprehensive review. Materials Today: Proceedings.
Bheel, N., Tafsirojjaman, T., Liu, Y., Awoyera, P., Kumar, A., & Keerio, M. A. (2021). Experimental study on engineering properties of cement concrete reinforced with nylon and jute fibers. Buildings, 11(10), 454.
Chandramouli, K., Srinivasa, R. P., Pannirselvam, N., Seshadri, S. T., & Sravana, P. (2010). Strength properties of glass fiber concrete. ARPN journal of Engineering and Applied sciences, 5(4), 1-6.
Choi, Y., & Yuan, R. L. (2005). Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cement and Concrete Research, 35(8), 1587-1591.
Daneshfar, M., Hassani, A., Aliha, M. R. M., Sadowski, T., & Karimi, A. (2023). Experimental Model for Study of Thickness Effect on Flexural Fatigue Life of Macro-Synthetic-Fiber-Reinforced Concretes. Buildings, 13(3), 642.
Domski, J., Katzer, J., Zakrzewski, M., & Ponikiewski, T. (2017). Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete. Journal of Cleaner Production, 158, 18-28.
Enfedaque, A., Cendón, D., Gálvez, F., & Sánchez-Gálvez, V. (2010). Analysis of glass fiber reinforced cement (GRC) fracture surfaces. Construction and Building Materials, 24(7), 1302-1308.
Fakhri, M., Yousefian, F., Amoosoltani, E., Aliha, M. R. M., & Berto, F. (2021). Combined effects of recycled crumb rubber and silica fume on mechanical properties and mode I fracture toughness of self‐compacting concrete. Fatigue & Fracture of Engineering Materials & Structures, 44(10), 2659-2673.
Fang, Y., Chen, B., & Oderji, S. Y. (2018). Experimental research on magnesium phosphate cement mortar reinforced by glass fiber. Construction and Building Materials, 188, 729-736.
Firda, A., Saggaff, A., Hanafiah, H., & Saloma, S. (2023). Experimental study of artificial lightweight aggregates using coal fly ash and epoxy resin. Engineering Solid Mechanics, 11(4), 369-278.
Gemi, L., Madenci, E., & Özkılıç, Y. O. (2021). Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete. Engineering Structures, 244, 112790.
Golewski, G. L. (2023). The phenomenon of cracking in cement concretes and reinforced concrete structures: the mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection—a review. Buildings, 13(3), 765.
Grzymski, F., Musiał, M., & Trapko, T. (2019). Mechanical properties of fibre reinforced concrete with recycled fibres. Construction and Building Materials, 198, 323-331.
He, J., Kawasaki, S., & Achal, V. (2020). The utilization of agricultural waste as agro-cement in concrete: A review. Sustainability, 12(17), 6971.
Hoseini, S. O., Mousavi, S. R., Sohrabi, M. R., & Ghasemi, M. (2023). Using beam and ENDB specimens to evaluate fracture characteristics of wavy steel fiber‐reinforced self‐compacting concrete containing different coarse aggregate volumes. Fatigue & Fracture of Engineering Materials & Structures, 46(5), 1669-1686.
Hoseini, S. O., Sohrabi, M. R., Mousavi, S. R., & Ghasemi, M. (2022). Effects of coarse aggregate and wavy steel fiber volumes on the critical stress intensity factors of modes I and III cracks in self-compacting concrete using ENDB specimens. Theoretical and Applied Fracture Mechanics, 121, 103421.
Hussain, S., & Yadav, J. S. (2023). Mechanical and Durability Performances of Alkali-resistant Glass Fiber-reinforced Concrete. Jordan Journal of Civil Engineering, 17(2).
Islam, M. J., Islam, K., Shahjalal, M., Khatun, E., Islam, S., & Razzaque, A. B. (2022). Influence of different types of fibers on the mechanical properties of recycled waste aggregate concrete. Construction and Building Materials, 337, 127577.
Iucolano, F., Liguori, B., & Colella, C. (2013). Fibre-reinforced lime-based mortars: A possible resource for ancient masonry restoration. Construction and Building Materials, 38, 785-789.
Jamali, M. Z., Khoso, S., Soomro, Z., Sohu, S., & Abro, A. F. (2022). Evaluating the suitability of groundwater in pakistan: an analysis of water quality using synthetic pollution index (spi) and water quality index (WQI). International Journal of Energy, Environment and Economics, 30(3), 311-328.
Jamali, M. Z., Solangi, G. S., & Keerio, M. A. (2020). Assessment of Groundwater Quality of Taluka Larkana, Sindh, Pakistan. International Journal of Scientific & Engineering Research, 11(5), 795-797.
Jamali, M. Z., Solangi, G. S., Keerio, M. A., Keerio, J. A., & Bheel, N. (2023). Assessing and mapping the groundwater quality of Taluka Larkana, Sindh, Pakistan, using water quality indices and geospatial tools. International Journal of Environmental Science and Technology, 20(8), 8849-8862.
Ji, X., Ge, Y., Li, M., Wang, L., & Liu, S. (2023). Preparation of carbon fiber conductive concrete and study on its mechanical and heating properties. Journal of Materials Research and Technology, 27, 3029-3040.
Karimi, H. R., Aliha, M. R. M., Ebneabbasi, P., Salehi, S. M., Khedri, E., & Haghighatpour, P. J. (2023). Mode I and mode II fracture toughness and fracture energy of cement concrete containing different percentages of coarse and fine recycled tire rubber granules. Theoretical and Applied Fracture Mechanics, 123, 103722.
Khan, M. B., Waqar, A., Bheel, N., Shafiq, N., Hamah Sor, N., Radu, D., & Benjeddou, O. (2023). Optimization of fresh and mechanical characteristics of carbon fiber-reinforced concrete composites using response surface technique. Buildings, 13(4), 852.
Khan, M. I., Umair, M., Shaker, K., Basit, A., Nawab, Y., & Kashif, M. (2020). Impact of waste fibers on the mechanical performance of concrete composites. The Journal of The Textile Institute, 111(11), 1632-1640.
Khanzadi, M., & Behnood, A. (2009). Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate. Construction and building materials, 23(6), 2183-2188.
Krishna, B. V., & Rao, D. M. K. (2015). A comparative and experimental study on the mechanical properties of various steel and glass fiber reinforced high strength concrete. IRJET, 2, 129-133.
Madenci, E., Özkılıç, Y. O., Aksoylu, C., Asyraf, M. R. M., Syamsir, A., Supian, A. B. M., & Mamaev, N. (2023a). Buckling analysis of CNT-reinforced polymer composite beam using experimental and analytical methods. Materials, 16(2), 614.
Madenci, E., Özkılıç, Y. O., Aksoylu, C., Asyraf, M. R. M., Syamsir, A., Supian, A. B. M., & Elizaveta, B. (2023b). Experimental and analytical investigation of flexural behavior of carbon nanotube reinforced textile based composites. Materials, 16(6), 2222.
Mahadik, S. A., Kamane, S. K., & Lande, A. C. (2014). Effect of steel fibers on compressive and flexural strength of concrete. International Journal of Advanced Structures and Geotechnical Engineering, 3(4), 388-392.
Meddah, M. S., & Bencheikh, M. (2009). Properties of concrete reinforced with different kinds of industrial waste fibre materials. Construction and building materials, 23(10), 3196-3205.
Midhun, M. S., Rao, T. G., & Srikrishna, T. C. (2018). Mechanical and fracture properties of glass fiber reinforced geopolymer concrete. Advances in concrete construction, 6(1), 29.
Mohammadhosseini, H., & Awal, A. S. M. A. (2014). Physical and mechanical properties of concrete containing fibers from industrial carpet waste (Doctoral dissertation, Universiti Teknologi Malaysia).
Mohammadhosseini, H., Awal, A. A., & Yatim, J. B. M. (2017). The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibres. Construction and Building Materials, 100(143), 147-157.
Mousavi, S., Ghasemi, M., & Dehghani, M. (2024). Investigating the fracture toughness of the self compacting concrete using ENDB samples by changing the aggregate size and percent of steel fiber. Engineering Solid Mechanics, 12(1), 17-26.
Murali, G., Prasad, N., Klyuev, S., Fediuk, R., Abid, S. R., Amran, M., & Vatin, N. (2021). Impact resistance of functionally layered two-stage fibrous concrete. Fibers, 9(12), 88.
Najjar, S., Moghaddam, A. M., Sahaf, A., & Aliha, M. R. M. (2020). Low temperature fracture resistance of cement emulsified asphalt mortar under mixed mode I/III loading. Theoretical and Applied Fracture Mechanics, 110, 102800.
Noushini, A., Samali, B., & Vessalas, K. (2013). Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Construction and Building Materials, 49, 374-383.
Özkılıç, Y. O., Gemi, L., Madenci, E., Aksoylu, C., & Kalkan, İ. (2022). Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement. Steel and Composite Structures, An International Journal, 45(2), 193-204.
Pacheco, J., De Brito, J., Chastre, C., & Evangelista, L. (2019). Experimental investigation on the variability of the main mechanical properties of concrete produced with coarse recycled concrete aggregates. Construction and Building Materials, 201, 110-120.
Pan, Y., Wu, X., Huang, Z., Wu, G., Sun, S., Ye, H., & Zhang, Z. (2018). A new approach to enhancing interlaminar strength and galvanic corrosion resistance of CFRP/Mg laminates. Composites Part A: Applied Science and Manufacturing, 105, 78-86.
Patra, I., Al-Awsi, G. R. L., Hasan, Y. M., & Almotlaq, S. S. K. (2022). Mechanical properties of concrete containing recycled aggregate from construction waste. Sustainable Energy Technologies and Assessments, 53, 102722.
Prasad, N., & Murali, G. (2021). Exploring the impact performance of functionally-graded preplaced aggregate concrete incorporating steel and polypropylene fibres. Journal of Building Engineering, 35, 102077.
Rahmani, E., Dehestani, M., Beygi, M. H. A., Allahyari, H., & Nikbin, I. M. (2013). On the mechanical properties of concrete containing waste PET particles. Construction and Building Materials, 47, 1302-1308.
Ramezanianpour, A. A., Esmaeili, M., Ghahari, S. A., & Najafi, M. H. (2013). Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Construction and Building Materials, 44, 411-418.
Reis, J. M. L., & Ferreira, A. J. M. (2003). Fracture behavior of glass fiber reinforced polymer concrete. Polymer testing, 22(2), 149-153.
Rooholamini, H., Hassani, A., & Aliha, M. R. M. (2018). Evaluating the effect of macro-synthetic fibre on the mechanical properties of roller-compacted concrete pavement using response surface methodology. Construction and building materials, 159, 517-529.
Shaker, H., Ameri, M., Aliha, M. R. M., & Rooholamini, H. (2023). Evaluating low-temperature fracture toughness of steel slag aggregate-included asphalt mixture using response surface method. Construction and Building Materials, 370, 130647.
Singh, A., Charak, A., Biligiri, K. P., & Pandurangan, V. (2022). Glass and carbon fiber reinforced polymer composite wastes in pervious concrete: Material characterization and lifecycle assessment. Resources, Conservation and Recycling, 182, 106304.
Singh, S., Ransinchung, G. D., & Kumar, P. (2017). An economical processing technique to improve RAP inclusive concrete properties. Construction and Building Materials, 148, 734-747.
Souza, A. B., Ferreira, H. S., Vilela, A. P., Viana, Q. S., Mendes, J. F., & Mendes, R. F. (2021). Study on the feasibility of using agricultural waste in the production of concrete blocks. Journal of Building Engineering, 42, 102491.
Su, C., Wu, Q., Weng, L., & Chang, X. (2019). Experimental investigation of mode I fracture features of steel fiber-reinforced reactive powder concrete using semi-circular bend test. Engineering fracture mechanics, 209, 187-199.
Sugito, S., Alisjahbana, S., & Riyanto, H. (2022). Response surface methodology approach for optimized compressive strength of some mix design concrete aggregates from waste cockle shells and glass powder. Engineering Solid Mechanics, 10(2), 101-112.
Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in Materials, 6, 226.
Torkaman, J., Ashori, A., & Momtazi, A. S. (2014). Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks. Construction and building materials, 50, 432-436.
Wang, Q., Yan, P., Yang, J., & Zhang, B. (2013). Influence of steel slag on mechanical properties and durability of concrete. Construction and Building Materials, 47, 1414-1420.
Weli, S. S., Abbood, I. S., Hasan, K. F., & Jasim, M. A. (2020, July). Effect of steel fibers on the concrete strength grade: a review. In IOP Conference Series: Materials Science and Engineering (Vol. 888, No. 1, p. 012043). IOP Publishing.
Zhang, P., Han, S., Ng, S., & Wang, X. H. (2018). Fiber-reinforced concrete with application in civil engineering. Advances in Civil Engineering, 2018.
Zheng, C., Lou, C., Du, G., Li, X., Liu, Z., & Li, L. (2018). Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate. Results in Physics, 9, 1317-1322.