How to cite this paper
Nemati, S., Sharafi, P & Samali, B. (2019). Effects of cold joints on the structural behaviour of polyurethane rigid foam panels.Engineering Solid Mechanics, 7(1), 1-12.
Refrences
ASTM-E1730 (2015). Standard Specification for Rigid Foam for Use in Structural Sandwich Panel Core. ASTM International. West Conshohocken, PA.
Aliha, M. R. M., Linul, E., Bahmani, A., & Marsavina, L. (2018a). Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+ III loading. Polymer Testing, 67, 75-83.
Aliha, M. R. M., Bahmani, A., Linul, E., Marsavina, L., Mousavi S.S., & Mousavi A. (2018b). Investigation of fracture initiation angle and propagation path for PUR foams under mixed mode I/III loading. In: Proceedings of the 6th international conference on crack path September 2018, Verona, Italy.
Defonseka, C. (2013). Practical guide to flexible polyurethane foams. Smithers Rapra.
Fan, X., Zhao, M., & Wang, T. (2017). Experimental investigation of the fatigue crack propagation in a closed-cell aluminum alloy foam. Materials Science and Engineering: A, 708, 424-431.
Huang, J. S., & Lin, J. Y. (1996). Fatigue of cellular materials. Acta materialia, 44(1), 289-296.
Kanny, K., Mahfuz, H., Carlsson, L. A., Thomas, T., & Jeelani, S. (2002). Dynamic mechanical analyses and flexural fatigue of PVC foams. Composite Structures, 58(2), 175-183.
Kaveh, A., & Sharafi, P. (2007). A simple ant algorithm for profile optimization of sparse matrices. Asian Journal of Civil Engineering (Building and Housing), 9(1), 35-46.
Kaveh, A., & Sharafi, P. (2011). Charged system search algorithm for minimax and minisum facility layout problems. Asian Journal of Civil Engineering, 12(6), 703-718.
Marsavina, L., Linul, E., Voiconi, T., & Sadowski, T. (2013). A comparison between dynamic and static fracture toughness of polyurethane foams. Polymer Testing, 32(4), 673-680.
Nemati, S., Sharafi, P., Samali, B., Aliabadizadeh, Y., & Saadati, S. (2018). Non-reinforced foam filled modules for rapidly assembled post disaster housing. International Journal of GEOMATE, 14(45), 151-161.
Noble, F. W., & Lilley, J. (1981). Fatigue crack growth in polyurethane foam. Journal of Materials Science, 16(7), 1801-1808.
Poapongsakorn, P., & Kanchanomai, C. (2013). Fatigue crack growth behavior and mechanism of closed‐cell PVC foam. Polymer Engineering & Science, 53(8), 1719-1727.
Sharafi, P., Nemati, S., Samali, B., Bahmani, A., & Khakpour, S. (2018 a). Behavior of integrated connections between adjacent foam-filled modular sandwich panels. Engineering Solid Mechanics, 6(4), 361-370.
Sharafi, P., Nemati, S., Samali, B., Bahmani, A., Khakpour, S., & Aliabadizadeh, Y. (2018 b). Flexural and shear performance of an innovative foam-filled sandwich panel with 3-D high density polyethylene skins. Engineering Solid Mechanics, 6(2), 113-128.
Sharafi, P., Samali, B., Ronagh, H., & Ghodrat, M. (2017). Automated spatial design of multi-story modular buildings using a unified matrix method. Automation in Construction, 82, 31-42.
Shipsha, A., Burman, M., & Zenkert, D. (2000). On mode I fatigue crack growth in foam core materials for sandwich structures. Journal of Sandwich Structures & Materials, 2(2), 103-116.
Toubia, E. A., & Elmushyakhi, A. (2017). Influence of core joints in sandwich composites under in-plane static and fatigue loads. Materials & Design, 131, 102-111.
Wang, L., Limodin, N., El Bartali, A., Witz, J. F., Seghir, R., Buffiere, J. Y., & Charkaluk, E. (2016). Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting A319 alloy by using 3D in-situ analysis. Materials Science and Engineering: A, 673, 362-372.
Zenkert, D., & Burman, M. (2009). Tension, compression and shear fatigue of a closed cell polymer foam. Composites Science and Technology, 69(6), 785-792.
Zhao, M. D., Fan, X., Fang, Q. Z., & Wang, T. J. (2015). Experimental investigation of the fatigue of closed-cell aluminum alloy foam. Materials Letters, 160, 68-71.
Aliha, M. R. M., Linul, E., Bahmani, A., & Marsavina, L. (2018a). Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+ III loading. Polymer Testing, 67, 75-83.
Aliha, M. R. M., Bahmani, A., Linul, E., Marsavina, L., Mousavi S.S., & Mousavi A. (2018b). Investigation of fracture initiation angle and propagation path for PUR foams under mixed mode I/III loading. In: Proceedings of the 6th international conference on crack path September 2018, Verona, Italy.
Defonseka, C. (2013). Practical guide to flexible polyurethane foams. Smithers Rapra.
Fan, X., Zhao, M., & Wang, T. (2017). Experimental investigation of the fatigue crack propagation in a closed-cell aluminum alloy foam. Materials Science and Engineering: A, 708, 424-431.
Huang, J. S., & Lin, J. Y. (1996). Fatigue of cellular materials. Acta materialia, 44(1), 289-296.
Kanny, K., Mahfuz, H., Carlsson, L. A., Thomas, T., & Jeelani, S. (2002). Dynamic mechanical analyses and flexural fatigue of PVC foams. Composite Structures, 58(2), 175-183.
Kaveh, A., & Sharafi, P. (2007). A simple ant algorithm for profile optimization of sparse matrices. Asian Journal of Civil Engineering (Building and Housing), 9(1), 35-46.
Kaveh, A., & Sharafi, P. (2011). Charged system search algorithm for minimax and minisum facility layout problems. Asian Journal of Civil Engineering, 12(6), 703-718.
Marsavina, L., Linul, E., Voiconi, T., & Sadowski, T. (2013). A comparison between dynamic and static fracture toughness of polyurethane foams. Polymer Testing, 32(4), 673-680.
Nemati, S., Sharafi, P., Samali, B., Aliabadizadeh, Y., & Saadati, S. (2018). Non-reinforced foam filled modules for rapidly assembled post disaster housing. International Journal of GEOMATE, 14(45), 151-161.
Noble, F. W., & Lilley, J. (1981). Fatigue crack growth in polyurethane foam. Journal of Materials Science, 16(7), 1801-1808.
Poapongsakorn, P., & Kanchanomai, C. (2013). Fatigue crack growth behavior and mechanism of closed‐cell PVC foam. Polymer Engineering & Science, 53(8), 1719-1727.
Sharafi, P., Nemati, S., Samali, B., Bahmani, A., & Khakpour, S. (2018 a). Behavior of integrated connections between adjacent foam-filled modular sandwich panels. Engineering Solid Mechanics, 6(4), 361-370.
Sharafi, P., Nemati, S., Samali, B., Bahmani, A., Khakpour, S., & Aliabadizadeh, Y. (2018 b). Flexural and shear performance of an innovative foam-filled sandwich panel with 3-D high density polyethylene skins. Engineering Solid Mechanics, 6(2), 113-128.
Sharafi, P., Samali, B., Ronagh, H., & Ghodrat, M. (2017). Automated spatial design of multi-story modular buildings using a unified matrix method. Automation in Construction, 82, 31-42.
Shipsha, A., Burman, M., & Zenkert, D. (2000). On mode I fatigue crack growth in foam core materials for sandwich structures. Journal of Sandwich Structures & Materials, 2(2), 103-116.
Toubia, E. A., & Elmushyakhi, A. (2017). Influence of core joints in sandwich composites under in-plane static and fatigue loads. Materials & Design, 131, 102-111.
Wang, L., Limodin, N., El Bartali, A., Witz, J. F., Seghir, R., Buffiere, J. Y., & Charkaluk, E. (2016). Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting A319 alloy by using 3D in-situ analysis. Materials Science and Engineering: A, 673, 362-372.
Zenkert, D., & Burman, M. (2009). Tension, compression and shear fatigue of a closed cell polymer foam. Composites Science and Technology, 69(6), 785-792.
Zhao, M. D., Fan, X., Fang, Q. Z., & Wang, T. J. (2015). Experimental investigation of the fatigue of closed-cell aluminum alloy foam. Materials Letters, 160, 68-71.