How to cite this paper
Khosravi, A., Bahraseman, H., Hassani, K & Kazemi-Saleh, D. (2014). Numerical method to measure velocity integration, stroke volume and cardiac output while rest: using 2D fluid-solid interaction model.Engineering Solid Mechanics, 2(2), 91-100.
Refrences
AL-Atabi, M., Espino, D. M., & Hukins, D. W. (2010). Computer and experimental modelling of blood flow through the mitral valve of the heart. Journal of Biomechanical Science and Engineering, 5(1), 78-84.
Bahraseman, H. G., Hassani, K., Navidbakhsh, M., Espino, D. M., Sani, Z. A., & Fatouraee, N. (2013). Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study. Computer methods in biomechanics and biomedical engineering, (ahead-of-print), 1-14.
Bellhouse, BJ. (1972). The fluid mechanics of heart valves In: Cardiovascular Fluid Dynamics. Volume 1. Bergel DH (ed). London, Academic Press.
Bodnar, E., Grunkemeier, G. L., & Gabbay, S. (1999). Heart valve replacement: A statistical review of 35 years & apos; results-Discussion.
Butchart, E. G., Ionescu, A., Payne, N., Giddings, J., Grunkemeier, G. L., & Fraser, A. G. (2003). A new scoring system to determine thromboembolic risk after heart valve replacement. Circulation, 108(10 suppl 1), II-68.
Christie, J., Sheldahl, L. M., Tristani, F. E., Sagar, K. B., Ptacin, M. J., & Wann, S. (1987). Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution. Circulation, 76(3), 539-547.
Comsol Users Manual. (2011). Comsol Multiphysics Users Guide. Londen, Comsol Ltd.
Criner, G. J., Barnette, R. E., & D & apos; Alonzo, G. E. (Eds.). (2010). Critical care study guide: text and review. Springer.
De Hart, J., Peters, G. W., Schreurs, P. J., & Baaijens, F. P. (2000). A two-dimensional fluid–structure interaction model of the aortic value. Journal of biomechanics, 33(9), 1079-1088.
De Hart, J., Peters, G. W. M., Schreurs, P. J. G., & Baaijens, F. P. T. (2003a). A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. Journal of biomechanics, 36(1), 103-112.
De Hart, J., Baaijens, F. P. T., Peters, G. W. M., & Schreurs, P. J. G. (2003b). A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. Journal of biomechanics, 36(5), 699-712.
Donea, J., Giuliani, S., & Halleux, J. P. (1982). An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33(1), 689-723.
Dowell, E. H., & Hall, K. C. (2001). Modeling of fluid-structure interaction. Annual Review of Fluid Mechanics, 33(1), 445-490.
Espino, D. M., Shepherd, D. E., & Hukins, D. W. (2012). Evaluation of a transient, simultaneous, arbitrary Lagrange–Euler based multi-physics method for simulating the mitral heart valve. Computer Methods in Biomechanics and Biomedical Engineering, (ahead-of-print), 1-9.
Espino, D. M., Shepherd, D. E., & Hukins, D. W. (2013). Development of a transient large strain contact method for biological heart valve simulations. Computer Methods in Biomechanics and Biomedical Engineering, 16(4), 413-424.
Espino, D. M., Shepherd, D. E. T., & Hukins, D. W. L. (2013). A Simple Method for Contact modelling in an Arbitrary frame of Reference within multi-Physics Software. Journal of Mechanics, 29(03), N9-N14.
Formaggia, L., & Nobile, F. (1999). A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East West Journal of Numerical Mathematics, 7, 105-132.
Govindarajan, V., Udaykumar, H. S., Herbertson, L. H., Deutsch, S., Manning, K. B., & Chandran, K. B. (2010). Two-dimensional FSI simulation of closing dynamics of a tilting disc mechanical heart valve. Journal of medical devices, 4(1), 11001.
Giddens, D. P., Yoganathan, A. P., & Schoen, F. J. (1993). Prosthetic cardiac valves. Cardiovascular Pathology, 2(3), 167-177.
Griffith, B. E., & Peskin, C. S. (2005). On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems. Journal of Computational Physics, 208(1), 75-105.
Griffith, B. E., Hornung, R. D., McQueen, D. M., & Peskin, C. S. (2007). An adaptive, formally second order accurate version of the immersed boundary method. Journal of Computational Physics, 223(1), 10-49.
Griffith, B. E., Luo, X., McQueen, D. M., & Peskin, C. S. (2009). Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. International Journal of Applied Mechanics, 1(01), 137-177.
Guyton, A. C., Hall, J. E. (1996). Overview of circulation; medical physics of pressure. Textbook of Medical Physiology. 9th ed. Pennsylvania: WB Saunders.
Kim, H. J., Vignon-Clementel, I. E., Figueroa, C. A., LaDisa, J. F., Jansen, K. E., Feinstein, J. A., & Taylor, C. A. (2009). On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Annals of biomedical engineering, 37(11), 2153-2169.
Koch, T. M., Reddy, B. D., Zilla, P., & Franz, T. (2010). Aortic valve leaflet mechanical properties facilitate diastolic valve function. Computer methods in biomechanics and biomedical engineering, 13(2), 225-234.
Korakianitis, T., & Shi, Y. (2006). Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. Journal of biomechanics, 39(11), 1964-1982.
Labrosse, M. R., Lobo, K., & Beller, C. J. (2010). Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded. Journal of biomechanics, 43(10), 1916-1922.
Laske, A., Jenni, R., Maloigne, M., Vassalli, G., Bertel, O., & Turina, M. I. (1996). Pressure gradients across bileaflet aortic valves by direct measurement and echocardiography. The Annals of thoracic surgery, 61(1), 48-57.
Murphy, S. L., Xu, J., & Kochanek, K. D. (2012). National Vital Statistics Reports. National Vital Statistics Reports, 60(4), 1.
Nobili, M., Sheriff, J., Morbiducci, U., Redaelli, A., & Bluestein, D. (2008). Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO journal (American Society for Artificial Internal Organs: 1992), 54(1), 64.
?hman, C., Espino, D. M., Heinmann, T., Baleani, M., Delingette, H., & Viceconti, M. (2011). Subject-specific knee joint model: Design of an experiment to validate a multi-body finite element model. The Visual Computer, 27(2), 153-159.
Park, S. H., Lee, S. J., Kim, J. Y., Kim, M. J., Lee, J. Y., Cho, A. R., ... & Jin, D. K. (2011). Direct comparison between brachial pressure obtained by oscillometric method and central pressure using invasive method. Soonchunhyang Medical Science, 17(2), 65-71.
Pedley, T. J., Schroter, R. C., Seed, W. A., & Parker, K. H. (1978). The mechanics of the circulation (Vol. 192633236). Oxford: Oxford University Press.
Piérard, L. A., & Lancellotti, P. (2007). Stress testing in valve disease. Heart, 93(6), 766-772.
Podnar, T., Runovc, F., & Korda?, M. (2002). Simulation of cardiovascular physiology: the diastolic function (s) of the heart. Computers in biology and medicine, 32(5), 363-377.
Porth, C. (2007). Essentials of pathophysiology: Concepts of altered health states. Lippincott Williams & Wilkins.
Van de Vosse, F. N., De Hart, J., Van Oijen, C. H. G. A., Bessems, D., Gunther, T. W. M., Segal, A., ... & Baaijens, F. P. T. (2003). Finite-element-based computational methods for cardiovascular fluid-structure interaction. Journal of engineering mathematics, 47(3-4), 335-368.
Weinberg, E. J., & Kaazempur Mofrad, M. R. (2008). A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. Journal of biomechanics, 41(16), 3482-3487.
Winslow, A. M. (1966). Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh. Journal of computational physics, 1(2), 149-172.
Bahraseman, H. G., Hassani, K., Navidbakhsh, M., Espino, D. M., Sani, Z. A., & Fatouraee, N. (2013). Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study. Computer methods in biomechanics and biomedical engineering, (ahead-of-print), 1-14.
Bellhouse, BJ. (1972). The fluid mechanics of heart valves In: Cardiovascular Fluid Dynamics. Volume 1. Bergel DH (ed). London, Academic Press.
Bodnar, E., Grunkemeier, G. L., & Gabbay, S. (1999). Heart valve replacement: A statistical review of 35 years & apos; results-Discussion.
Butchart, E. G., Ionescu, A., Payne, N., Giddings, J., Grunkemeier, G. L., & Fraser, A. G. (2003). A new scoring system to determine thromboembolic risk after heart valve replacement. Circulation, 108(10 suppl 1), II-68.
Christie, J., Sheldahl, L. M., Tristani, F. E., Sagar, K. B., Ptacin, M. J., & Wann, S. (1987). Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution. Circulation, 76(3), 539-547.
Comsol Users Manual. (2011). Comsol Multiphysics Users Guide. Londen, Comsol Ltd.
Criner, G. J., Barnette, R. E., & D & apos; Alonzo, G. E. (Eds.). (2010). Critical care study guide: text and review. Springer.
De Hart, J., Peters, G. W., Schreurs, P. J., & Baaijens, F. P. (2000). A two-dimensional fluid–structure interaction model of the aortic value. Journal of biomechanics, 33(9), 1079-1088.
De Hart, J., Peters, G. W. M., Schreurs, P. J. G., & Baaijens, F. P. T. (2003a). A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. Journal of biomechanics, 36(1), 103-112.
De Hart, J., Baaijens, F. P. T., Peters, G. W. M., & Schreurs, P. J. G. (2003b). A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. Journal of biomechanics, 36(5), 699-712.
Donea, J., Giuliani, S., & Halleux, J. P. (1982). An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33(1), 689-723.
Dowell, E. H., & Hall, K. C. (2001). Modeling of fluid-structure interaction. Annual Review of Fluid Mechanics, 33(1), 445-490.
Espino, D. M., Shepherd, D. E., & Hukins, D. W. (2012). Evaluation of a transient, simultaneous, arbitrary Lagrange–Euler based multi-physics method for simulating the mitral heart valve. Computer Methods in Biomechanics and Biomedical Engineering, (ahead-of-print), 1-9.
Espino, D. M., Shepherd, D. E., & Hukins, D. W. (2013). Development of a transient large strain contact method for biological heart valve simulations. Computer Methods in Biomechanics and Biomedical Engineering, 16(4), 413-424.
Espino, D. M., Shepherd, D. E. T., & Hukins, D. W. L. (2013). A Simple Method for Contact modelling in an Arbitrary frame of Reference within multi-Physics Software. Journal of Mechanics, 29(03), N9-N14.
Formaggia, L., & Nobile, F. (1999). A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East West Journal of Numerical Mathematics, 7, 105-132.
Govindarajan, V., Udaykumar, H. S., Herbertson, L. H., Deutsch, S., Manning, K. B., & Chandran, K. B. (2010). Two-dimensional FSI simulation of closing dynamics of a tilting disc mechanical heart valve. Journal of medical devices, 4(1), 11001.
Giddens, D. P., Yoganathan, A. P., & Schoen, F. J. (1993). Prosthetic cardiac valves. Cardiovascular Pathology, 2(3), 167-177.
Griffith, B. E., & Peskin, C. S. (2005). On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems. Journal of Computational Physics, 208(1), 75-105.
Griffith, B. E., Hornung, R. D., McQueen, D. M., & Peskin, C. S. (2007). An adaptive, formally second order accurate version of the immersed boundary method. Journal of Computational Physics, 223(1), 10-49.
Griffith, B. E., Luo, X., McQueen, D. M., & Peskin, C. S. (2009). Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. International Journal of Applied Mechanics, 1(01), 137-177.
Guyton, A. C., Hall, J. E. (1996). Overview of circulation; medical physics of pressure. Textbook of Medical Physiology. 9th ed. Pennsylvania: WB Saunders.
Kim, H. J., Vignon-Clementel, I. E., Figueroa, C. A., LaDisa, J. F., Jansen, K. E., Feinstein, J. A., & Taylor, C. A. (2009). On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Annals of biomedical engineering, 37(11), 2153-2169.
Koch, T. M., Reddy, B. D., Zilla, P., & Franz, T. (2010). Aortic valve leaflet mechanical properties facilitate diastolic valve function. Computer methods in biomechanics and biomedical engineering, 13(2), 225-234.
Korakianitis, T., & Shi, Y. (2006). Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. Journal of biomechanics, 39(11), 1964-1982.
Labrosse, M. R., Lobo, K., & Beller, C. J. (2010). Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded. Journal of biomechanics, 43(10), 1916-1922.
Laske, A., Jenni, R., Maloigne, M., Vassalli, G., Bertel, O., & Turina, M. I. (1996). Pressure gradients across bileaflet aortic valves by direct measurement and echocardiography. The Annals of thoracic surgery, 61(1), 48-57.
Murphy, S. L., Xu, J., & Kochanek, K. D. (2012). National Vital Statistics Reports. National Vital Statistics Reports, 60(4), 1.
Nobili, M., Sheriff, J., Morbiducci, U., Redaelli, A., & Bluestein, D. (2008). Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO journal (American Society for Artificial Internal Organs: 1992), 54(1), 64.
?hman, C., Espino, D. M., Heinmann, T., Baleani, M., Delingette, H., & Viceconti, M. (2011). Subject-specific knee joint model: Design of an experiment to validate a multi-body finite element model. The Visual Computer, 27(2), 153-159.
Park, S. H., Lee, S. J., Kim, J. Y., Kim, M. J., Lee, J. Y., Cho, A. R., ... & Jin, D. K. (2011). Direct comparison between brachial pressure obtained by oscillometric method and central pressure using invasive method. Soonchunhyang Medical Science, 17(2), 65-71.
Pedley, T. J., Schroter, R. C., Seed, W. A., & Parker, K. H. (1978). The mechanics of the circulation (Vol. 192633236). Oxford: Oxford University Press.
Piérard, L. A., & Lancellotti, P. (2007). Stress testing in valve disease. Heart, 93(6), 766-772.
Podnar, T., Runovc, F., & Korda?, M. (2002). Simulation of cardiovascular physiology: the diastolic function (s) of the heart. Computers in biology and medicine, 32(5), 363-377.
Porth, C. (2007). Essentials of pathophysiology: Concepts of altered health states. Lippincott Williams & Wilkins.
Van de Vosse, F. N., De Hart, J., Van Oijen, C. H. G. A., Bessems, D., Gunther, T. W. M., Segal, A., ... & Baaijens, F. P. T. (2003). Finite-element-based computational methods for cardiovascular fluid-structure interaction. Journal of engineering mathematics, 47(3-4), 335-368.
Weinberg, E. J., & Kaazempur Mofrad, M. R. (2008). A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. Journal of biomechanics, 41(16), 3482-3487.
Winslow, A. M. (1966). Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh. Journal of computational physics, 1(2), 149-172.