How to cite this paper
Helal, M., Shishah, W., Zakariah, M & Kashmeery, T. (2024). Hand gesture recognition based on CNN and YOLO techniques.Decision Science Letters , 13(4), 977-990.
Refrences
Abraham, E., Nayak, A., & Iqbal, A. (2019). Real-Time Translation of Indian Sign Language using LSTM. 2019 Global Conference for Advancement in Technology (GCAT), 1–5. https://doi.org/10.1109/GCAT47503.2019.8978343
Affonso, C., Rossi, A. L. D., Vieira, F. H. A., & de Carvalho, A. C. P. de L. F. (2017). Deep learning for biological image classification. Expert Systems with Applications, 85, 114–122. https://doi.org/10.1016/j.eswa.2017.05.039
Ameen, S., & Vadera, S. (2017). A convolutional neural network to classify American Sign Language fingerspelling from depth and colour images. Expert Systems, 34(3). https://doi.org/10.1111/exsy.12197
American Sign Language Letters Dataset. (2021). Roboflow Web Page.
ANSARI, Z. A., & HARIT, G. (2016). Nearest neighbour classification of Indian sign language gestures using kinect camera. Sadhana, 41(2), 161–182. https://doi.org/10.1007/s12046-015-0405-3
Arora, P., Chaudhary, G., Crespo, R. G., Khari, M., & Srivastava, S. (2021). Concepts and real-time applications of Deep Learning. Springer.
Cheok, M. J., Omar, Z., & Jaward, M. H. (2019). A review of hand gesture and sign language recognition techniques. International Journal of Machine Learning and Cybernetics, 10(1), 131–153. https://doi.org/10.1007/s13042-017-0705-5
Chong, T.-W., & Kim, B.-J. (2020). American Sign Language Recognition System Using Wearable Sensors with Deep Learning Approach. The Journal of the Korea Institute of Electronic Communication Sciences, 15(2), 291–298.
Daniels, S., Suciati, N., & Fathichah, C. (2021). Indonesian Sign Language Recognition using YOLO Method. IOP Conference Series: Materials Science and Engineering, 1077(1), 012029. https://doi.org/10.1088/1757-899X/1077/1/012029
Dima, T. F., & Ahmed, Md. E. (2021). Using YOLOv5 Algorithm to Detect and Recognize American Sign Language. 2021 International Conference on Information Technology (ICIT), 603–607. https://doi.org/10.1109/ICIT52682.2021.9491672
Fang, Y., Guo, X., Chen, K., Zhou, Z., & Ye, Q. (2021). Accurate and automated detection of surface knots on sawn timbers using YOLO-V5 model. BioResources, 16(3), 5390–5406. https://doi.org/10.15376/biores.16.3.5390-5406
Gupta, R., & Kumar, A. (2021). Indian sign language recognition using wearable sensors and multi-label classification. Computers & Electrical Engineering, 90, 106898. https://doi.org/10.1016/j.compeleceng.2020.106898
Jacob, M. G., Wachs, J. P., & Packer, R. A. (2013). Hand-gesture-based sterile interface for the operating room using contextual cues for the navigation of radiological images. Journal of the American Medical Informatics Association, 20(e1), e183–e186. https://doi.org/10.1136/amiajnl-2012-001212
Kakoty, N. M., & Sharma, M. D. (2018). Recognition of Sign Language Alphabets and Numbers based on Hand Kinematics using A Data Glove. Procedia Computer Science, 133, 55–62. https://doi.org/10.1016/j.procs.2018.07.008
Kang, B., Tripathi, S., & Nguyen, T. Q. (n.d.). Real-time Sign Language Fingerspelling Recognition using Convolutional Neural Networks from Depth map. ArXiv (Cornell University).
Kataria, G., Gupta, A., Kaushik, V. S., & Chaudhary, G. (2021). Emotion Recognition from Speech Signals Using Machine Learning and Deep Learning Techniques (pp. 63–73). https://doi.org/10.1007/978-3-030-76167-7_4
Kulshreshth, A., Pfeil, K., & LaViola, J. J. (2017). Enhancing the Gaming Experience Using 3D Spatial User Interface Technologies. IEEE Computer Graphics and Applications, 37(3), 16–23. https://doi.org/10.1109/MCG.2017.42
Li, G., Tang, H., Sun, Y., Kong, J., Jiang, G., Jiang, D., Tao, B., Xu, S., & Liu, H. (2019). Hand gesture recognition based on convolution neural network. Cluster Computing, 22(S2), 2719–2729. https://doi.org/10.1007/s10586-017-1435-x
Lichtenauer, J. F., Hendriks, E. A., & Reinders, M. J. (2008). Sign Language Recognition by Combining Statistical DTW and Independent Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11), 2040–2046. https://doi.org/10.1109/TPAMI.2008.123
Liu, H., & Wang, L. (2018). Gesture recognition for human-robot collaboration: A review. International Journal of Industrial Ergonomics, 68, 355–367. https://doi.org/10.1016/j.ergon.2017.02.004
Mitra, S., & Acharya, T. (2007). Gesture Recognition: A Survey. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(3), 311–324. https://doi.org/10.1109/TSMCC.2007.893280
Mohanty, A., Rambhatla, S. S., & Sahay, R. R. (2017). Deep Gesture: Static Hand Gesture Recognition Using CNN (pp. 449–461). https://doi.org/10.1007/978-981-10-2107-7_41
Neto, G. M. R., Junior, G. B., de Almeida, J. D. S., & de Paiva, A. C. (2018). Sign Language Recognition Based on 3D Convolutional Neural Networks (pp. 399–407). https://doi.org/10.1007/978-3-319-93000-8_45
Ng, W. L., Ng, C. K., Noordin, N. K., & Mohd. Ali, B. (2011). Gesture Based Automating Household Appliances (pp. 285–293). https://doi.org/10.1007/978-3-642-21605-3_32
Pavlovic, V. I., Sharma, R., & Huang, T. S. (1997). Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 677–695. https://doi.org/10.1109/34.598226
Pillai, M. S., Chaudhary, G., Khari, M., & Crespo, R. G. (2021). Real-time image enhancement for an automatic automobile accident detection through CCTV using deep learning. Soft Computing, 25(18), 11929–11940. https://doi.org/10.1007/s00500-021-05576-w
Pisharady, P. K., & Saerbeck, M. (2015). Recent methods and databases in vision-based hand gesture recognition: A review. Computer Vision and Image Understanding, 141, 152–165. https://doi.org/10.1016/j.cviu.2015.08.004
Rastgoo, R., Kiani, K., & Escalera, S. (2018). Multi-Modal Deep Hand Sign Language Recognition in Still Images Using Restricted Boltzmann Machine. Entropy, 20(11), 809. https://doi.org/10.3390/e20110809
Rautaray, S. S., & Agrawal, A. (2015a). Vision based hand gesture recognition for human computer interaction: a survey. Artificial Intelligence Review, 43(1), 1–54. https://doi.org/10.1007/s10462-012-9356-9
Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. Computer Vision and Pattern Recognition.
Roy, A. M., Bhaduri, J., Kumar, T., & Raj, K. (2023). WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection. Ecological Informatics, 75, 101919. https://doi.org/10.1016/j.ecoinf.2022.101919
Roy, A. M., Bose, R., & Bhaduri, J. (2022). A fast accurate fine-grain object detection model based on YOLOv4 deep neural network. Neural Computing and Applications, 34(5), 3895–3921. https://doi.org/10.1007/s00521-021-06651-x
Sahoo, A. K., Mishra, G. S., & Ravulakollu, K. K. (2014). Sign language recognition: State of the art. ARPN Journal of Engineering and Applied Sciences, 9(2), 116-134.
Sagayam, K. M., & Hemanth, D. J. (2017a). Hand posture and gesture recognition techniques for virtual reality applications: a survey. Virtual Reality, 21(2), 91–107. https://doi.org/10.1007/s10055-016-0301-0
Sagayam, K. M., & Hemanth, D. J. (2017b). Hand posture and gesture recognition techniques for virtual reality applications: a survey. Virtual Reality, 21(2), 91–107. https://doi.org/10.1007/s10055-016-0301-0
Sharma, S., & Singh, S. (2020). Vision-based sign language recognition system: A Comprehensive Review. 2020 International Conference on Inventive Computation Technologies (ICICT), 140–144. https://doi.org/10.1109/ICICT48043.2020.9112409
Srivastava, S., Chaudhary, G., & Shukla, C. (2021). Text-Independent Speaker Recognition Using Deep Learning. EAI/Springer Innovations in Communication and Computing, 41–51.
Stergiopoulou, E., Sgouropoulos, K., Nikolaou, N., Papamarkos, N., & Mitianoudis, N. (2014). Real time hand detection in a complex background. Engineering Applications of Artificial Intelligence, 35, 54–70. https://doi.org/10.1016/j.engappai.2014.06.006
Tao, W., Leu, M. C., & Yin, Z. (2018). American Sign Language alphabet recognition using Convolutional Neural Networks with multiview augmentation and inference fusion. Engineering Applications of Artificial Intelligence, 76, 202–213. https://doi.org/10.1016/j.engappai.2018.09.006
Traore, B. B., Kamsu-Foguem, B., & Tangara, F. (2018). Deep convolution neural network for image recognition. Ecological Informatics, 48, 257–268. https://doi.org/10.1016/j.ecoinf.2018.10.002
Wikipedia Web Page, American Manuel Alphabet, https://en.wikipedia.org/wiki/American_manual_alphabet, 11/12/2021. (n.d.).
Wu, C.-H., Chen, W.-L., & Lin, C. H. (2016). Depth-based hand gesture recognition. Multimedia Tools and Applications, 75(12), 7065–7086. https://doi.org/10.1007/s11042-015-2632-3
Xiao, Q., Qin, M., & Yin, Y. (2020). Skeleton-based Chinese sign language recognition and generation for bidirectional communication between deaf and hearing people. Neural Networks, 125, 41–55. https://doi.org/10.1016/j.neunet.2020.01.030
Xing, K., Ding, Z., Jiang, S., Ma, X., Yang, K., Yang, C., Li, X., & Jiang, F. (2018). Hand Gesture Recognition Based on Deep Learning Method. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), 542–546. https://doi.org/10.1109/DSC.2018.00087
Ying Wu, & Huang, T. S. (n.d.). Human hand modeling, analysis and animation in the context of HCI. Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), 6–10. https://doi.org/10.1109/ICIP.1999.817058
YOLOv5. (2021). GitHub Web Page - Https://Github.Com/Ultralytics/Yolov5/Wiki/Train-Custom-Data.
Affonso, C., Rossi, A. L. D., Vieira, F. H. A., & de Carvalho, A. C. P. de L. F. (2017). Deep learning for biological image classification. Expert Systems with Applications, 85, 114–122. https://doi.org/10.1016/j.eswa.2017.05.039
Ameen, S., & Vadera, S. (2017). A convolutional neural network to classify American Sign Language fingerspelling from depth and colour images. Expert Systems, 34(3). https://doi.org/10.1111/exsy.12197
American Sign Language Letters Dataset. (2021). Roboflow Web Page.
ANSARI, Z. A., & HARIT, G. (2016). Nearest neighbour classification of Indian sign language gestures using kinect camera. Sadhana, 41(2), 161–182. https://doi.org/10.1007/s12046-015-0405-3
Arora, P., Chaudhary, G., Crespo, R. G., Khari, M., & Srivastava, S. (2021). Concepts and real-time applications of Deep Learning. Springer.
Cheok, M. J., Omar, Z., & Jaward, M. H. (2019). A review of hand gesture and sign language recognition techniques. International Journal of Machine Learning and Cybernetics, 10(1), 131–153. https://doi.org/10.1007/s13042-017-0705-5
Chong, T.-W., & Kim, B.-J. (2020). American Sign Language Recognition System Using Wearable Sensors with Deep Learning Approach. The Journal of the Korea Institute of Electronic Communication Sciences, 15(2), 291–298.
Daniels, S., Suciati, N., & Fathichah, C. (2021). Indonesian Sign Language Recognition using YOLO Method. IOP Conference Series: Materials Science and Engineering, 1077(1), 012029. https://doi.org/10.1088/1757-899X/1077/1/012029
Dima, T. F., & Ahmed, Md. E. (2021). Using YOLOv5 Algorithm to Detect and Recognize American Sign Language. 2021 International Conference on Information Technology (ICIT), 603–607. https://doi.org/10.1109/ICIT52682.2021.9491672
Fang, Y., Guo, X., Chen, K., Zhou, Z., & Ye, Q. (2021). Accurate and automated detection of surface knots on sawn timbers using YOLO-V5 model. BioResources, 16(3), 5390–5406. https://doi.org/10.15376/biores.16.3.5390-5406
Gupta, R., & Kumar, A. (2021). Indian sign language recognition using wearable sensors and multi-label classification. Computers & Electrical Engineering, 90, 106898. https://doi.org/10.1016/j.compeleceng.2020.106898
Jacob, M. G., Wachs, J. P., & Packer, R. A. (2013). Hand-gesture-based sterile interface for the operating room using contextual cues for the navigation of radiological images. Journal of the American Medical Informatics Association, 20(e1), e183–e186. https://doi.org/10.1136/amiajnl-2012-001212
Kakoty, N. M., & Sharma, M. D. (2018). Recognition of Sign Language Alphabets and Numbers based on Hand Kinematics using A Data Glove. Procedia Computer Science, 133, 55–62. https://doi.org/10.1016/j.procs.2018.07.008
Kang, B., Tripathi, S., & Nguyen, T. Q. (n.d.). Real-time Sign Language Fingerspelling Recognition using Convolutional Neural Networks from Depth map. ArXiv (Cornell University).
Kataria, G., Gupta, A., Kaushik, V. S., & Chaudhary, G. (2021). Emotion Recognition from Speech Signals Using Machine Learning and Deep Learning Techniques (pp. 63–73). https://doi.org/10.1007/978-3-030-76167-7_4
Kulshreshth, A., Pfeil, K., & LaViola, J. J. (2017). Enhancing the Gaming Experience Using 3D Spatial User Interface Technologies. IEEE Computer Graphics and Applications, 37(3), 16–23. https://doi.org/10.1109/MCG.2017.42
Li, G., Tang, H., Sun, Y., Kong, J., Jiang, G., Jiang, D., Tao, B., Xu, S., & Liu, H. (2019). Hand gesture recognition based on convolution neural network. Cluster Computing, 22(S2), 2719–2729. https://doi.org/10.1007/s10586-017-1435-x
Lichtenauer, J. F., Hendriks, E. A., & Reinders, M. J. (2008). Sign Language Recognition by Combining Statistical DTW and Independent Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11), 2040–2046. https://doi.org/10.1109/TPAMI.2008.123
Liu, H., & Wang, L. (2018). Gesture recognition for human-robot collaboration: A review. International Journal of Industrial Ergonomics, 68, 355–367. https://doi.org/10.1016/j.ergon.2017.02.004
Mitra, S., & Acharya, T. (2007). Gesture Recognition: A Survey. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(3), 311–324. https://doi.org/10.1109/TSMCC.2007.893280
Mohanty, A., Rambhatla, S. S., & Sahay, R. R. (2017). Deep Gesture: Static Hand Gesture Recognition Using CNN (pp. 449–461). https://doi.org/10.1007/978-981-10-2107-7_41
Neto, G. M. R., Junior, G. B., de Almeida, J. D. S., & de Paiva, A. C. (2018). Sign Language Recognition Based on 3D Convolutional Neural Networks (pp. 399–407). https://doi.org/10.1007/978-3-319-93000-8_45
Ng, W. L., Ng, C. K., Noordin, N. K., & Mohd. Ali, B. (2011). Gesture Based Automating Household Appliances (pp. 285–293). https://doi.org/10.1007/978-3-642-21605-3_32
Pavlovic, V. I., Sharma, R., & Huang, T. S. (1997). Visual interpretation of hand gestures for human-computer interaction: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 677–695. https://doi.org/10.1109/34.598226
Pillai, M. S., Chaudhary, G., Khari, M., & Crespo, R. G. (2021). Real-time image enhancement for an automatic automobile accident detection through CCTV using deep learning. Soft Computing, 25(18), 11929–11940. https://doi.org/10.1007/s00500-021-05576-w
Pisharady, P. K., & Saerbeck, M. (2015). Recent methods and databases in vision-based hand gesture recognition: A review. Computer Vision and Image Understanding, 141, 152–165. https://doi.org/10.1016/j.cviu.2015.08.004
Rastgoo, R., Kiani, K., & Escalera, S. (2018). Multi-Modal Deep Hand Sign Language Recognition in Still Images Using Restricted Boltzmann Machine. Entropy, 20(11), 809. https://doi.org/10.3390/e20110809
Rautaray, S. S., & Agrawal, A. (2015a). Vision based hand gesture recognition for human computer interaction: a survey. Artificial Intelligence Review, 43(1), 1–54. https://doi.org/10.1007/s10462-012-9356-9
Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. Computer Vision and Pattern Recognition.
Roy, A. M., Bhaduri, J., Kumar, T., & Raj, K. (2023). WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection. Ecological Informatics, 75, 101919. https://doi.org/10.1016/j.ecoinf.2022.101919
Roy, A. M., Bose, R., & Bhaduri, J. (2022). A fast accurate fine-grain object detection model based on YOLOv4 deep neural network. Neural Computing and Applications, 34(5), 3895–3921. https://doi.org/10.1007/s00521-021-06651-x
Sahoo, A. K., Mishra, G. S., & Ravulakollu, K. K. (2014). Sign language recognition: State of the art. ARPN Journal of Engineering and Applied Sciences, 9(2), 116-134.
Sagayam, K. M., & Hemanth, D. J. (2017a). Hand posture and gesture recognition techniques for virtual reality applications: a survey. Virtual Reality, 21(2), 91–107. https://doi.org/10.1007/s10055-016-0301-0
Sagayam, K. M., & Hemanth, D. J. (2017b). Hand posture and gesture recognition techniques for virtual reality applications: a survey. Virtual Reality, 21(2), 91–107. https://doi.org/10.1007/s10055-016-0301-0
Sharma, S., & Singh, S. (2020). Vision-based sign language recognition system: A Comprehensive Review. 2020 International Conference on Inventive Computation Technologies (ICICT), 140–144. https://doi.org/10.1109/ICICT48043.2020.9112409
Srivastava, S., Chaudhary, G., & Shukla, C. (2021). Text-Independent Speaker Recognition Using Deep Learning. EAI/Springer Innovations in Communication and Computing, 41–51.
Stergiopoulou, E., Sgouropoulos, K., Nikolaou, N., Papamarkos, N., & Mitianoudis, N. (2014). Real time hand detection in a complex background. Engineering Applications of Artificial Intelligence, 35, 54–70. https://doi.org/10.1016/j.engappai.2014.06.006
Tao, W., Leu, M. C., & Yin, Z. (2018). American Sign Language alphabet recognition using Convolutional Neural Networks with multiview augmentation and inference fusion. Engineering Applications of Artificial Intelligence, 76, 202–213. https://doi.org/10.1016/j.engappai.2018.09.006
Traore, B. B., Kamsu-Foguem, B., & Tangara, F. (2018). Deep convolution neural network for image recognition. Ecological Informatics, 48, 257–268. https://doi.org/10.1016/j.ecoinf.2018.10.002
Wikipedia Web Page, American Manuel Alphabet, https://en.wikipedia.org/wiki/American_manual_alphabet, 11/12/2021. (n.d.).
Wu, C.-H., Chen, W.-L., & Lin, C. H. (2016). Depth-based hand gesture recognition. Multimedia Tools and Applications, 75(12), 7065–7086. https://doi.org/10.1007/s11042-015-2632-3
Xiao, Q., Qin, M., & Yin, Y. (2020). Skeleton-based Chinese sign language recognition and generation for bidirectional communication between deaf and hearing people. Neural Networks, 125, 41–55. https://doi.org/10.1016/j.neunet.2020.01.030
Xing, K., Ding, Z., Jiang, S., Ma, X., Yang, K., Yang, C., Li, X., & Jiang, F. (2018). Hand Gesture Recognition Based on Deep Learning Method. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), 542–546. https://doi.org/10.1109/DSC.2018.00087
Ying Wu, & Huang, T. S. (n.d.). Human hand modeling, analysis and animation in the context of HCI. Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), 6–10. https://doi.org/10.1109/ICIP.1999.817058
YOLOv5. (2021). GitHub Web Page - Https://Github.Com/Ultralytics/Yolov5/Wiki/Train-Custom-Data.