How to cite this paper
Yasmirullah, S., Otok, B., Purnomo, J & Prastyo, D. (2023). A hybrid model of spatial autoregressive-multivariate adaptive generalized Poisson regression spline.Decision Science Letters , 12(4), 721-728.
Refrences
Ampulembang, A. P., Otok, B. W., Rumiati, A. T., & Budiasih. (2015). Bi-responses nonparametric regression model using MARS and its properties. Applied Mathematical Sciences, 9(29–32), 1417–1427. https://doi.org/10.12988/ams.2015.5127
Dey, P., & Das, A. K. (2016). Application of Multivariate Adaptive Regression Spline-Assisted Objective Function on Optimization of Heat Transfer Rate Around a Cylinder. Nuclear Engineering and Technology, 48(6), 1315–1320. https://doi.org/10.1016/j.net.2016.06.011
Friedman, J. H. (1991). Multivariate Adaptive Regression Splines (MARS). The Annals of Statistics, 19(1), 1–67.
Glaser, S. (n.d.). A Review Of Spatial Econometric Models For Count Data. https://wiso.uni-hohenheim.de/papers
Hidayati, S. (2019). Penaksiran Parameter dan Statistik Uji Model Multivariate Adaptive Generalized Poisson Regression Spline pada Kasus Jumlah Penderita Ispa pada Bayi di Surabaya Tahun 2017 [Tesis]. Institut Teknologi Sepuluh Nopember.
Hidayati, S., Otok, B. W., & Purhadi. (2019). Parameter Estimation and Statistical Test in Multivariate Adaptive Generalized Poisson Regression Splines. IOP Conference Series: Materials Science and Engineering, 546(5). https://doi.org/10.1088/1757-899X/546/5/052051
Kooperberg, C. (2014). Multivariate Adaptive Regression Splines. Wiley StatsRef: Statistics Reference Online.
Lambert, D. M., Brown, J. P., & Florax, R. J. G. M. (2010). A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application. Regional Science and Urban Economics, 40(4), 241–252. https://doi.org/10.1016/j.regsciurbeco.2010.04.001
Liu, L., Zhang, S., & Cheng, Y. M. (2019). Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines. Geoscience Frontiers, 10(2), 1–12. https://doi.org/10.1016/j.gsf.2018.03.013
Makalew, L. A., Kuntoro, Otok, B. W., Soenarnatalina, M., & Layuk, S. (2019). Modeling the number of cases of tuberculosis sensitive drugs (Tbsd) in East Java using geographically weighted poisson regression (GWPR). Indian Journal of Public Health Research and Development, 10(6), 398–403. https://doi.org/10.5958/0976-5506.2019.01305.6
Makalew, L. A., Otok, B. W., & Barung, E. N. (2019). Spatio of lungs Tuberculosis (Tb Lungs) in East Java Using Geographically Weighted Poisson Regression (GWPR). In Indian Journal of Public Health Research & Development (Vol. 10, Issue 8).
Milborrow, S. (2021). Package Earth. In The Annals of Statistics (Vol. 19, Issue 1). https://cran.r-project.org/web/packages/earth/earth.pdf
Otok, B. W., Hidayati, S., & Purhadi. (2019). Multivariate Adaptive Generalized Poisson Regression Spline (MAGPRS) on the number of acute respiratory infection infants. Journal of Physics: Conference Series, 1397(1). https://doi.org/10.1088/1742-6596/1397/1/012062
Otok, B. W., Putra, R. Y., & P Yasmirullah, S. D. (2020). Bootstrap Aggregating Multivariate Adaptive Regression Spline For Observational Studies In Diabetes Cases. In Systematic Reviews in Pharmacy (Vol. 11, Issue 8).
Raj, N., & Gharineiat, Z. (2021). Evaluation of multivariate adaptive regression splines and artificial neural network for prediction of mean sea level trend around northern australian coastlines. Mathematics, 9(21). https://doi.org/10.3390/math9212696
Stoklosa, J., & Warton, D. I. (2018). A Generalized Estimating Equation Approach to Multivariate Adaptive Regression Splines. Journal of Computational and Graphical Statistics, 27(1), 245–253. https://doi.org/10.1080/10618600.2017.1360780
Suhartono, Faulina, R., Lusia, D. A., Otok, B. W., Sutikno, & Kuswanto, H. (2012). Ensemble method based on ANFIS-ARIMA for rainfall prediction. ICSSBE 2012 - Proceedings, 2012 International Conference on Statistics in Science, Business and Engineering: “Empowering Decision Making with Statistical Sciences,” 240–243. https://doi.org/10.1109/ICSSBE.2012.6396564
Wang, X., Yang, C., & Zhou, M. (2021). Partial least squares improved multivariate adaptive regression splines for visible and near‐infrared‐based soil organic matter estimation considering spatial heterogeneity. Applied Sciences (Switzerland), 11(2), 1–16. https://doi.org/10.3390/app11020566
Yasmirullah, S. D. P., Otok, B. W., Purnlmo, J. D. T., & Prastyo, D. D. (2021). Multivariate adaptive regression spline (MARS) methods with application to multi drug-resistant tuberculosis (mdr-tb) prevalence. AIP Conference Proceedings, 2329. https://doi.org/10.1063/5.0042145
Yasmirullah, S. D. P., Otok, B. W., Purnomo, J. D. T., & Prastyo, D. D. (2021). Parameter Estimation of Multivariate Adaptive Regression Spline (MARS) with Stepwise Approach to Multi Drug-Resistant Tuberculosis (MDR-TB) Modeling in Lamongan Regency. Journal of Physics: Conference Series, 1752(1). https://doi.org/10.1088/1742-6596/1752/1/012017
Yasmirullah, S. D. P., Otok, B. W., Trijoyo Purnomo, J. D., & Prastyo, D. D. (2021). Modification of Multivariate Adaptive Regression Spline (MARS). Journal of Physics: Conference Series, 1863(1). https://doi.org/10.1088/1742-6596/1863/1/012078
York, T. P., Eaves, L. J., & van den Oord, E. J. C. G. (2006). Multivariate adaptive regression splines: A powerful method for detecting disease-risk relationship differences among subgroups. Statistics in Medicine, 25(8), 1355–1367. https://doi.org/10.1002/sim.2292
Zheng, G., Yang, P., Zhou, H., Zeng, C., Yang, X., He, X., & Yu, X. (2019). Evaluation of the earthquake induced uplift displacement of tunnels using multivariate adaptive regression splines. Computers and Geotechnics, 113. https://doi.org/10.1016/j.compgeo.2019.103099
Dey, P., & Das, A. K. (2016). Application of Multivariate Adaptive Regression Spline-Assisted Objective Function on Optimization of Heat Transfer Rate Around a Cylinder. Nuclear Engineering and Technology, 48(6), 1315–1320. https://doi.org/10.1016/j.net.2016.06.011
Friedman, J. H. (1991). Multivariate Adaptive Regression Splines (MARS). The Annals of Statistics, 19(1), 1–67.
Glaser, S. (n.d.). A Review Of Spatial Econometric Models For Count Data. https://wiso.uni-hohenheim.de/papers
Hidayati, S. (2019). Penaksiran Parameter dan Statistik Uji Model Multivariate Adaptive Generalized Poisson Regression Spline pada Kasus Jumlah Penderita Ispa pada Bayi di Surabaya Tahun 2017 [Tesis]. Institut Teknologi Sepuluh Nopember.
Hidayati, S., Otok, B. W., & Purhadi. (2019). Parameter Estimation and Statistical Test in Multivariate Adaptive Generalized Poisson Regression Splines. IOP Conference Series: Materials Science and Engineering, 546(5). https://doi.org/10.1088/1757-899X/546/5/052051
Kooperberg, C. (2014). Multivariate Adaptive Regression Splines. Wiley StatsRef: Statistics Reference Online.
Lambert, D. M., Brown, J. P., & Florax, R. J. G. M. (2010). A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application. Regional Science and Urban Economics, 40(4), 241–252. https://doi.org/10.1016/j.regsciurbeco.2010.04.001
Liu, L., Zhang, S., & Cheng, Y. M. (2019). Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines. Geoscience Frontiers, 10(2), 1–12. https://doi.org/10.1016/j.gsf.2018.03.013
Makalew, L. A., Kuntoro, Otok, B. W., Soenarnatalina, M., & Layuk, S. (2019). Modeling the number of cases of tuberculosis sensitive drugs (Tbsd) in East Java using geographically weighted poisson regression (GWPR). Indian Journal of Public Health Research and Development, 10(6), 398–403. https://doi.org/10.5958/0976-5506.2019.01305.6
Makalew, L. A., Otok, B. W., & Barung, E. N. (2019). Spatio of lungs Tuberculosis (Tb Lungs) in East Java Using Geographically Weighted Poisson Regression (GWPR). In Indian Journal of Public Health Research & Development (Vol. 10, Issue 8).
Milborrow, S. (2021). Package Earth. In The Annals of Statistics (Vol. 19, Issue 1). https://cran.r-project.org/web/packages/earth/earth.pdf
Otok, B. W., Hidayati, S., & Purhadi. (2019). Multivariate Adaptive Generalized Poisson Regression Spline (MAGPRS) on the number of acute respiratory infection infants. Journal of Physics: Conference Series, 1397(1). https://doi.org/10.1088/1742-6596/1397/1/012062
Otok, B. W., Putra, R. Y., & P Yasmirullah, S. D. (2020). Bootstrap Aggregating Multivariate Adaptive Regression Spline For Observational Studies In Diabetes Cases. In Systematic Reviews in Pharmacy (Vol. 11, Issue 8).
Raj, N., & Gharineiat, Z. (2021). Evaluation of multivariate adaptive regression splines and artificial neural network for prediction of mean sea level trend around northern australian coastlines. Mathematics, 9(21). https://doi.org/10.3390/math9212696
Stoklosa, J., & Warton, D. I. (2018). A Generalized Estimating Equation Approach to Multivariate Adaptive Regression Splines. Journal of Computational and Graphical Statistics, 27(1), 245–253. https://doi.org/10.1080/10618600.2017.1360780
Suhartono, Faulina, R., Lusia, D. A., Otok, B. W., Sutikno, & Kuswanto, H. (2012). Ensemble method based on ANFIS-ARIMA for rainfall prediction. ICSSBE 2012 - Proceedings, 2012 International Conference on Statistics in Science, Business and Engineering: “Empowering Decision Making with Statistical Sciences,” 240–243. https://doi.org/10.1109/ICSSBE.2012.6396564
Wang, X., Yang, C., & Zhou, M. (2021). Partial least squares improved multivariate adaptive regression splines for visible and near‐infrared‐based soil organic matter estimation considering spatial heterogeneity. Applied Sciences (Switzerland), 11(2), 1–16. https://doi.org/10.3390/app11020566
Yasmirullah, S. D. P., Otok, B. W., Purnlmo, J. D. T., & Prastyo, D. D. (2021). Multivariate adaptive regression spline (MARS) methods with application to multi drug-resistant tuberculosis (mdr-tb) prevalence. AIP Conference Proceedings, 2329. https://doi.org/10.1063/5.0042145
Yasmirullah, S. D. P., Otok, B. W., Purnomo, J. D. T., & Prastyo, D. D. (2021). Parameter Estimation of Multivariate Adaptive Regression Spline (MARS) with Stepwise Approach to Multi Drug-Resistant Tuberculosis (MDR-TB) Modeling in Lamongan Regency. Journal of Physics: Conference Series, 1752(1). https://doi.org/10.1088/1742-6596/1752/1/012017
Yasmirullah, S. D. P., Otok, B. W., Trijoyo Purnomo, J. D., & Prastyo, D. D. (2021). Modification of Multivariate Adaptive Regression Spline (MARS). Journal of Physics: Conference Series, 1863(1). https://doi.org/10.1088/1742-6596/1863/1/012078
York, T. P., Eaves, L. J., & van den Oord, E. J. C. G. (2006). Multivariate adaptive regression splines: A powerful method for detecting disease-risk relationship differences among subgroups. Statistics in Medicine, 25(8), 1355–1367. https://doi.org/10.1002/sim.2292
Zheng, G., Yang, P., Zhou, H., Zeng, C., Yang, X., He, X., & Yu, X. (2019). Evaluation of the earthquake induced uplift displacement of tunnels using multivariate adaptive regression splines. Computers and Geotechnics, 113. https://doi.org/10.1016/j.compgeo.2019.103099