How to cite this paper
Singamsetty, P & Thenepalle, J. (2021). An efficient genetic algorithm for solving open multiple travelling salesman problem with load balancing constraint.Decision Science Letters , 10(4), 525-534.
Refrences
Al-Omeer, M. A., & Ahmed, Z. H. (2019, April). Comparative study of crossover operators for the MTSP. In 2019 International Conference on Computer and Information Sciences (ICCIS) (pp. 1-6). IEEE.
Alves, R. M., & Lopes, C. R. (2015, May). Using genetic algorithms to minimize the distance and balance the routes for the multiple traveling salesman problem. In 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 3171-3178). IEEE.
Bailey, J. D. (1967), The behaviour of adaptive systems which employ genetic and correlation algorithms, Ph.D thesis, University of Michigan.
Benavent, E., & Martínez, A. (2013). Multi-depot Multiple TSP: a polyhedral study and computational results. Annals of Operations Research, 207(1), 7-25.
Bhavani, V., & Murthy, M. S. (2006). Truncated M-travelling salesmen problem. Opsearch, 43(2), 152-177.
Bharath-Kumar, K., & Jaffe, J. (1983). Routing to multiple destinations in computer networks. IEEE Transactions on Communications, 31(3), 343-351.
Brown, E. C., Ragsdale, C. T., & Carter, A. E. (2007). A grouping genetic algorithm for the multiple traveling salesperson problem. International Journal of Information Technology & Decision Making, 6(02), 333-347.
Carter, A. E., & Ragsdale, C. T. (2002). Scheduling pre-printed newspaper advertising inserts using genetic algorithms. Omega, 30(6), 415-421.
Carter, A. E., & Ragsdale, C. T. (2006). A new approach to solving the multiple traveling salesperson problem using genetic algorithms. European journal of operational research, 175(1), 245-257.
Garey, M.R., & Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness, in computers and intractability, vol. 24, New York, pp 90–91
Ghadiry, W., Habibi, J., & Aghdam, A.G. (2015) Generalized formulation for trajectory optimization in patrolling problems. In: Proceedings Halifax, NS, CCECE, pp 231–236
Gorenstein, S. (1970). Printing press scheduling for multi-edition periodicals. Management Science, 16(6), B-373.
Harrath, Y., Salman, A. F., Alqaddoumi, A., Hasan, H., & Radhi, A. (2019). A novel hybrid approach for solving the multiple traveling salesmen problem. Arab Journal of Basic and Applied Sciences, 26(1), 103-112.
Hong, S., & Padberg, M. W. (1977). A note on the symmetric multiple traveling salesman problem with fixed charges. Operations Research, 25(5), 871-874.
Kaliaperumal, R., Ramalingam, A., & Sripriya, J. (2015, March). A modified Two part chromosome Crossover for solving MTSP using Genetic algorithms. In Proceedings ICARCSET 2015, New York, pp. 1-4.
Kim, K. H., & Park, Y. M. (2004). A crane scheduling method for port container terminals. European Journal of operational research, 156(3), 752-768.
Király, A., & Abonyi, J. (2011). Optimization of multiple traveling salesmen problem by a novel representation based genetic algorithm. In Intelligent Computational Optimization in Engineering Vol. 366, pp. 241-269.
Larki, H., & Yousefikhoshbakht, M. (2014). Solving the multiple traveling salesman problem by a novel meta-heuristic algorithm. Journal of Optimization in Industrial Engineering, 7(16), 55-63.
Liu, M, & Zhang, PY (2014) New hybrid genetic algorithm for solving the multiple traveling salesman problem: an example of distribution of emergence materials. J Syst Manag 23(02):247–254.
Lo, K. M., Yi, W. Y., Wong, P. K., Leung, K. S., Leung, Y., & Mak, S. T. (2018). A genetic algorithm with new local operators for multiple traveling salesman problems. International Journal of Computational Intelligence Systems, 11(1), 692-705.
Malmborg, C. J. (1996). A genetic algorithm for service level based vehicle scheduling. European Journal of Operational Research, 93(1), 121-134.
Modares, A., Somhom, S., & Enkawa, T. (1999). A self‐organizing neural network approach for multiple traveling salesman and vehicle routing problems. International Transactions in Operational Research, 6(6), 591-606.
Okonjo-Adigwe, C. (1988). An effective method of balancing the workload amongst salesmen. Omega, 16(2), 159-163.
Saleh, H. A., & Chelouah, R. (2004). The design of the global navigation satellite system surveying networks using genetic algorithms. Engineering Applications of Artificial Intelligence, 17(1), 111-122.
Sedighpour, M., Yousefikhoshbakht, M., & Mahmoodi Darani, N. (2012). An effective genetic algorithm for solving the multiple traveling salesman problem. Journal of Optimization in Industrial Engineering, (8), 73-79.
Shuai, Y., Yunfeng, S., & Kai, Z. (2019). An effective method for solving multiple travelling salesman problem based on NSGA-II. Systems Science & Control Engineering, 7(2), 108-116.
Singh, A., & Baghel, A. S. (2009). A new grouping genetic algorithm approach to the multiple traveling salesperson problem. Soft Computing, 13(1), 95-101.
Singh, D. R., Singh, M. K., Singh, T., & Prasad, R. (2018). Genetic algorithm for solving multiple traveling salesmen problem using a new crossover and population generation. Computación y Sistemas, 22(2).
Sofge, D., Schultz, A., & De Jong, K. (2002, April). Evolutionary computational approaches to solving the multiple traveling salesman problem using a neighborhood attractor schema. In Workshops on Applications of Evolutionary Computation (pp. 153-162). Springer, Berlin, Heidelberg.
Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex. European Journal of Operational Research, 124(2), 267-282.
TSPLIB: The Library of TSP Benchmark Instances: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
Thenepalle, J., & Singamsetty, P. (2019). An open close multiple travelling salesman problem with single depot. Decision Science Letters, 8(2), 121-136.
Wang, X., & Regan, A. C. (2002). Local truckload pickup and delivery with hard time window constraints. Transportation Research Part B: Methodological, 36(2), 97-112.
Xu, X., Yuan, H., Liptrott, M., & Trovati, M. (2018). Two phase heuristic algorithm for the multiple-travelling salesman problem. Soft Computing, 22(19), 6567-6581.
Yan, X., Zhang, C., Luo, W., Li, W., Chen, W., & Liu, H. (2012). Solve traveling salesman problem using particle swarm optimization algorithm. International Journal of Computer Science Issues (IJCSI), 9(6), 264.
Yousefikhoshbakht, M., Didehvar, F., & Rahmati, F. (2013). Modification of the ant colony optimization for solving the multiple traveling salesman problem. Romanian Journal of Information Science and Technology, 16(1), 65-80.
Yuan, S., Skinner, B., Huang, S., & Liu, D. (2013). A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms. European Journal of Operational Research, 228(1), 72-82.
Alves, R. M., & Lopes, C. R. (2015, May). Using genetic algorithms to minimize the distance and balance the routes for the multiple traveling salesman problem. In 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 3171-3178). IEEE.
Bailey, J. D. (1967), The behaviour of adaptive systems which employ genetic and correlation algorithms, Ph.D thesis, University of Michigan.
Benavent, E., & Martínez, A. (2013). Multi-depot Multiple TSP: a polyhedral study and computational results. Annals of Operations Research, 207(1), 7-25.
Bhavani, V., & Murthy, M. S. (2006). Truncated M-travelling salesmen problem. Opsearch, 43(2), 152-177.
Bharath-Kumar, K., & Jaffe, J. (1983). Routing to multiple destinations in computer networks. IEEE Transactions on Communications, 31(3), 343-351.
Brown, E. C., Ragsdale, C. T., & Carter, A. E. (2007). A grouping genetic algorithm for the multiple traveling salesperson problem. International Journal of Information Technology & Decision Making, 6(02), 333-347.
Carter, A. E., & Ragsdale, C. T. (2002). Scheduling pre-printed newspaper advertising inserts using genetic algorithms. Omega, 30(6), 415-421.
Carter, A. E., & Ragsdale, C. T. (2006). A new approach to solving the multiple traveling salesperson problem using genetic algorithms. European journal of operational research, 175(1), 245-257.
Garey, M.R., & Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness, in computers and intractability, vol. 24, New York, pp 90–91
Ghadiry, W., Habibi, J., & Aghdam, A.G. (2015) Generalized formulation for trajectory optimization in patrolling problems. In: Proceedings Halifax, NS, CCECE, pp 231–236
Gorenstein, S. (1970). Printing press scheduling for multi-edition periodicals. Management Science, 16(6), B-373.
Harrath, Y., Salman, A. F., Alqaddoumi, A., Hasan, H., & Radhi, A. (2019). A novel hybrid approach for solving the multiple traveling salesmen problem. Arab Journal of Basic and Applied Sciences, 26(1), 103-112.
Hong, S., & Padberg, M. W. (1977). A note on the symmetric multiple traveling salesman problem with fixed charges. Operations Research, 25(5), 871-874.
Kaliaperumal, R., Ramalingam, A., & Sripriya, J. (2015, March). A modified Two part chromosome Crossover for solving MTSP using Genetic algorithms. In Proceedings ICARCSET 2015, New York, pp. 1-4.
Kim, K. H., & Park, Y. M. (2004). A crane scheduling method for port container terminals. European Journal of operational research, 156(3), 752-768.
Király, A., & Abonyi, J. (2011). Optimization of multiple traveling salesmen problem by a novel representation based genetic algorithm. In Intelligent Computational Optimization in Engineering Vol. 366, pp. 241-269.
Larki, H., & Yousefikhoshbakht, M. (2014). Solving the multiple traveling salesman problem by a novel meta-heuristic algorithm. Journal of Optimization in Industrial Engineering, 7(16), 55-63.
Liu, M, & Zhang, PY (2014) New hybrid genetic algorithm for solving the multiple traveling salesman problem: an example of distribution of emergence materials. J Syst Manag 23(02):247–254.
Lo, K. M., Yi, W. Y., Wong, P. K., Leung, K. S., Leung, Y., & Mak, S. T. (2018). A genetic algorithm with new local operators for multiple traveling salesman problems. International Journal of Computational Intelligence Systems, 11(1), 692-705.
Malmborg, C. J. (1996). A genetic algorithm for service level based vehicle scheduling. European Journal of Operational Research, 93(1), 121-134.
Modares, A., Somhom, S., & Enkawa, T. (1999). A self‐organizing neural network approach for multiple traveling salesman and vehicle routing problems. International Transactions in Operational Research, 6(6), 591-606.
Okonjo-Adigwe, C. (1988). An effective method of balancing the workload amongst salesmen. Omega, 16(2), 159-163.
Saleh, H. A., & Chelouah, R. (2004). The design of the global navigation satellite system surveying networks using genetic algorithms. Engineering Applications of Artificial Intelligence, 17(1), 111-122.
Sedighpour, M., Yousefikhoshbakht, M., & Mahmoodi Darani, N. (2012). An effective genetic algorithm for solving the multiple traveling salesman problem. Journal of Optimization in Industrial Engineering, (8), 73-79.
Shuai, Y., Yunfeng, S., & Kai, Z. (2019). An effective method for solving multiple travelling salesman problem based on NSGA-II. Systems Science & Control Engineering, 7(2), 108-116.
Singh, A., & Baghel, A. S. (2009). A new grouping genetic algorithm approach to the multiple traveling salesperson problem. Soft Computing, 13(1), 95-101.
Singh, D. R., Singh, M. K., Singh, T., & Prasad, R. (2018). Genetic algorithm for solving multiple traveling salesmen problem using a new crossover and population generation. Computación y Sistemas, 22(2).
Sofge, D., Schultz, A., & De Jong, K. (2002, April). Evolutionary computational approaches to solving the multiple traveling salesman problem using a neighborhood attractor schema. In Workshops on Applications of Evolutionary Computation (pp. 153-162). Springer, Berlin, Heidelberg.
Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex. European Journal of Operational Research, 124(2), 267-282.
TSPLIB: The Library of TSP Benchmark Instances: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
Thenepalle, J., & Singamsetty, P. (2019). An open close multiple travelling salesman problem with single depot. Decision Science Letters, 8(2), 121-136.
Wang, X., & Regan, A. C. (2002). Local truckload pickup and delivery with hard time window constraints. Transportation Research Part B: Methodological, 36(2), 97-112.
Xu, X., Yuan, H., Liptrott, M., & Trovati, M. (2018). Two phase heuristic algorithm for the multiple-travelling salesman problem. Soft Computing, 22(19), 6567-6581.
Yan, X., Zhang, C., Luo, W., Li, W., Chen, W., & Liu, H. (2012). Solve traveling salesman problem using particle swarm optimization algorithm. International Journal of Computer Science Issues (IJCSI), 9(6), 264.
Yousefikhoshbakht, M., Didehvar, F., & Rahmati, F. (2013). Modification of the ant colony optimization for solving the multiple traveling salesman problem. Romanian Journal of Information Science and Technology, 16(1), 65-80.
Yuan, S., Skinner, B., Huang, S., & Liu, D. (2013). A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms. European Journal of Operational Research, 228(1), 72-82.