How to cite this paper
Kazemi, S & Niaki, S. (2021). Monitoring image-based processes using a PCA-based control chart and a classification technique.Decision Science Letters , 10(1), 39-52.
Refrences
He, Q. P., Wang, J., & Shah, D. (2019). Feature space monitoring for smart manufacturing via statistics pattern analysis. Computers & Chemical Engineering 126, 321-331.
Hotteling, H. (1947). Multivariate quality control illustrated by the air testing of sample bombsites. New York: McGraw-Hill: 111.
Jackson, J. E. (1991). PCA with more than two variables. A user's guide to principal components. Wiley series in probability and mathematical p. statistics. Applied probability and statistics, 26-62.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.
Kistner, M., Jemwa, G. T., & Aldrich, C. (2013). Monitoring of mineral processing systems by using textural image analysis. Minerals Engineering, 52, 169-177.
Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC methods for process and product monitoring. Journal of Quality Technology, 28(4), 409-428.
Ledley, R. S. (1964). High-speed automatic analysis of biomedical pictures. Science 146 3641), 216-223.
Liang, D.-T., Deng, W.-Y. Wang, X.-Y., & Zhang, Y. (2009). Multivariate image analysis in Gaussian multi-scale space for defect detection. Journal of Bionic Engineering 6(3), 298-305.
Malamas, E. N., Petrakis, E. G., Zervakis, M., Petit, L., & Legat, J.-D. (2003). A survey on industrial vision systems, applications and tools. Image and Vision Computing 21(2), 171-188.
Megahed, F. M., Woodall, W. H., & Camelio, J. A. (2011). A review and perspective on control charting with image data. Journal of Quality Technology 43(2), 83-98.
Mirschel, G., Daikos, O., & Scherzer, T. (2019). In-line monitoring of the thickness distribution of adhesive layers in black textile laminates by hyperspectral imaging. Computers & Chemical Engineering, 124, 317-325.
Montgomery, D. C. (2007). Introduction to statistical quality control. John Wiley & Sons.
Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC charts for monitoring batch processes. Technometrics, 37(1), 41-59.
Ottavian, M., Barolo, M., & García-Muñoz, S. (2013). Maintenance of machine vision systems for product quality assessment. Part I. Addressing changes in lighting conditions. Industrial & Engineering Chemistry Research, 52(35), 12309-12318.
Pereira, A. C., Reis, M. S., & Saraiva, P. M. (2008). Quality control of food products using image analysis and multivariate statistical tools. Industrial & Engineering Chemistry Research 48(2), 988-998.
Phaladiganon, P., Kim, S. B., Chen, V. C., & Jiang, W. (2013). Principal component analysis-based control charts for multivariate nonnormal distributions. Expert Systems with Applications, 40(8), 3044-3054.
Prats‐Montalbán, J. M., & Ferrer, A. (2007). Integration of colour and textural information in multivariate image analysis: defect detection and classification issues. Journal of Chemometrics, 21(1‐2), 10-23.
Prats-Montalbán, J. M., & Ferrer, A. (2014). Statistical process control based on multivariate image analysis: A new proposal for monitoring and defect detection. Computers & Chemical Engineering, 71, 501-511.
Prats-Montalbán, J., De Juan, A., & Ferrer, A. (2011). Multivariate image analysis: a review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23.
Prats‐Montalbán, J. M., Cocchi, M., & Ferrer, A. (2015). N‐way modeling for wavelet filter determination in multivariate image analysis. Journal of Chemometrics, 29(6), 379-388.
Rao, C. R. (1948). The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society. Series B (Methodological) 10(2), 159-203.
Reis, M. S. (2015). An integrated multiscale and multivariate image analysis framework for process monitoring of colour random textures: MSMIA. Chemometrics and Intelligent Laboratory Systems, 142, 36-48.
Reis, M. S., & Bauer, A. (2009). Wavelet texture analysis of on-line acquired images for paper formation assessment and monitoring. Chemometrics and Intelligent Laboratory Systems, 95(2), 129-137.
Reis, M. S., & Bauer, A. (2010). Image-based classification of paper surface quality using wavelet texture analysis. Computers & Chemical Engineering, 34(12), 2014-2021.
Ryan, T. P. (1989). Statistical methods for quality control. John Wiley and Sons, New York.
Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell Labs Technical Journal, 3(1), 43-87.
Singh, A., Dutta, M. K., ParthaSarathi, M., Uher, V., & Burget, R. (2016). Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Computer Methods and Programs in Biomedicine, 124, 108-120.
Strauss, H. W., Zaret, B. L., Hurley, P. J., Natarajan, T., & Pitt, B. (1971). A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization. The American Journal of Cardiology, 28(5), 575-580.
Szatvanyi, G., Duchesne, C., & Bartolacci, G. (2006). Multivariate image analysis of flames for product quality and combustion control in rotary kilns. Industrial & Engineering Chemistry Research, 45(13), 4706-4715.
Wang, T., Xu, R., Han, X., Chen, Y.-W., Ishizaki, Y., Miyamoto, M., & Hattori, T. (2016). A principal component analysis based method to automatically inspect wear of throw-away tips. Journal of Intelligent & Fuzzy Systems, 31(2), 903-913.
Wójcik, W., & Kotyra, A. (2009). Combustion diagnosis by image processing. Photonics Letters of Poland 1(1), 40-42.
Yan, H., Paynabar, K., & Shi, J. (2015). Image-based process monitoring using low-rank tensor decomposition. IEEE Transactions on Automation Science and Engineering, 12(1), 216-227.
Yu, H., & MacGregor, J. F. (2003). Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemometrics and Intelligent Laboratory Systems, 67(2), 125-144.
Yu, H.,& MacGregor, J. F. (2004). Monitoring flames in an industrial boiler using multivariate image analysis. AIChE Journal 50(7), 1474-1483.
Hotteling, H. (1947). Multivariate quality control illustrated by the air testing of sample bombsites. New York: McGraw-Hill: 111.
Jackson, J. E. (1991). PCA with more than two variables. A user's guide to principal components. Wiley series in probability and mathematical p. statistics. Applied probability and statistics, 26-62.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.
Kistner, M., Jemwa, G. T., & Aldrich, C. (2013). Monitoring of mineral processing systems by using textural image analysis. Minerals Engineering, 52, 169-177.
Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC methods for process and product monitoring. Journal of Quality Technology, 28(4), 409-428.
Ledley, R. S. (1964). High-speed automatic analysis of biomedical pictures. Science 146 3641), 216-223.
Liang, D.-T., Deng, W.-Y. Wang, X.-Y., & Zhang, Y. (2009). Multivariate image analysis in Gaussian multi-scale space for defect detection. Journal of Bionic Engineering 6(3), 298-305.
Malamas, E. N., Petrakis, E. G., Zervakis, M., Petit, L., & Legat, J.-D. (2003). A survey on industrial vision systems, applications and tools. Image and Vision Computing 21(2), 171-188.
Megahed, F. M., Woodall, W. H., & Camelio, J. A. (2011). A review and perspective on control charting with image data. Journal of Quality Technology 43(2), 83-98.
Mirschel, G., Daikos, O., & Scherzer, T. (2019). In-line monitoring of the thickness distribution of adhesive layers in black textile laminates by hyperspectral imaging. Computers & Chemical Engineering, 124, 317-325.
Montgomery, D. C. (2007). Introduction to statistical quality control. John Wiley & Sons.
Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC charts for monitoring batch processes. Technometrics, 37(1), 41-59.
Ottavian, M., Barolo, M., & García-Muñoz, S. (2013). Maintenance of machine vision systems for product quality assessment. Part I. Addressing changes in lighting conditions. Industrial & Engineering Chemistry Research, 52(35), 12309-12318.
Pereira, A. C., Reis, M. S., & Saraiva, P. M. (2008). Quality control of food products using image analysis and multivariate statistical tools. Industrial & Engineering Chemistry Research 48(2), 988-998.
Phaladiganon, P., Kim, S. B., Chen, V. C., & Jiang, W. (2013). Principal component analysis-based control charts for multivariate nonnormal distributions. Expert Systems with Applications, 40(8), 3044-3054.
Prats‐Montalbán, J. M., & Ferrer, A. (2007). Integration of colour and textural information in multivariate image analysis: defect detection and classification issues. Journal of Chemometrics, 21(1‐2), 10-23.
Prats-Montalbán, J. M., & Ferrer, A. (2014). Statistical process control based on multivariate image analysis: A new proposal for monitoring and defect detection. Computers & Chemical Engineering, 71, 501-511.
Prats-Montalbán, J., De Juan, A., & Ferrer, A. (2011). Multivariate image analysis: a review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23.
Prats‐Montalbán, J. M., Cocchi, M., & Ferrer, A. (2015). N‐way modeling for wavelet filter determination in multivariate image analysis. Journal of Chemometrics, 29(6), 379-388.
Rao, C. R. (1948). The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society. Series B (Methodological) 10(2), 159-203.
Reis, M. S. (2015). An integrated multiscale and multivariate image analysis framework for process monitoring of colour random textures: MSMIA. Chemometrics and Intelligent Laboratory Systems, 142, 36-48.
Reis, M. S., & Bauer, A. (2009). Wavelet texture analysis of on-line acquired images for paper formation assessment and monitoring. Chemometrics and Intelligent Laboratory Systems, 95(2), 129-137.
Reis, M. S., & Bauer, A. (2010). Image-based classification of paper surface quality using wavelet texture analysis. Computers & Chemical Engineering, 34(12), 2014-2021.
Ryan, T. P. (1989). Statistical methods for quality control. John Wiley and Sons, New York.
Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell Labs Technical Journal, 3(1), 43-87.
Singh, A., Dutta, M. K., ParthaSarathi, M., Uher, V., & Burget, R. (2016). Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Computer Methods and Programs in Biomedicine, 124, 108-120.
Strauss, H. W., Zaret, B. L., Hurley, P. J., Natarajan, T., & Pitt, B. (1971). A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization. The American Journal of Cardiology, 28(5), 575-580.
Szatvanyi, G., Duchesne, C., & Bartolacci, G. (2006). Multivariate image analysis of flames for product quality and combustion control in rotary kilns. Industrial & Engineering Chemistry Research, 45(13), 4706-4715.
Wang, T., Xu, R., Han, X., Chen, Y.-W., Ishizaki, Y., Miyamoto, M., & Hattori, T. (2016). A principal component analysis based method to automatically inspect wear of throw-away tips. Journal of Intelligent & Fuzzy Systems, 31(2), 903-913.
Wójcik, W., & Kotyra, A. (2009). Combustion diagnosis by image processing. Photonics Letters of Poland 1(1), 40-42.
Yan, H., Paynabar, K., & Shi, J. (2015). Image-based process monitoring using low-rank tensor decomposition. IEEE Transactions on Automation Science and Engineering, 12(1), 216-227.
Yu, H., & MacGregor, J. F. (2003). Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemometrics and Intelligent Laboratory Systems, 67(2), 125-144.
Yu, H.,& MacGregor, J. F. (2004). Monitoring flames in an industrial boiler using multivariate image analysis. AIChE Journal 50(7), 1474-1483.