How to cite this paper
Ghaffarinasab, N. (2020). A highly efficient exact algorithm for the uncapacitated multiple allocation p-hub center problem.Decision Science Letters , 9(2), 181-192.
Refrences
Alumur, S. & Kara, B.Y. (2008). Network hub location problems: The state of the art. European Journal of Operational Research, 190, 1–21.
Bashiri, M., Mirzaei, M., & Randall, M. (2013). Modeling fuzzy capacitated p-hub center problem and a genetic algorithm solution. Applied Mathematical Modelling, 37(5), 3513-3525.
Benders, J.F. (1962). Partitioning procedures for solving mixed variables programming problems. Numerisch Mathematik, 4(1), 238–252.
Brimberg, J., Mladenovic, N., Todosijevic, R., & Urosevic, D. (2017a). A basic variable neighborhood search heuristic for the uncapacitated multiple allocation p-hub center problem. Optimization Letters, 11(2), 313-327.
Brimberg, J., Mladenovic, N., Todosijevic, R., & Urosevic, D. (2017b). General variable neighborhood search for the uncapacitated single allocation p-hub center problem. Optimization Letters, 11(2), 377-388.
de Camargo, R.S., de Miranda Jr., G. & Luna, H.P. (2008). Benders decomposition for the uncapacitated multiple allocation hub location problem. Computers & Operations Research, 35(4), 1047–1064.
de Camargo, R.S., de Miranda Jr., G., Ferreira, R.P.M. & Luna, H.P. (2009a). Multiple allocation hub-and-spoke network design under hub congestion. Computers & Operations Research, 36(12), 3097–3106.
de Camargo, R.S., de Miranda Jr., G. & Luna, H.P. (2009b). Benders decomposition for hub location problems with economies of scale. Transportation Science, 43(1), 86–97.
de Camargo, R.S., de Miranda Jr., G. & Ferreira, R.P. (2011). A hybrid outer-approximation/benders decomposition algorithm for the single allocation hub location problem under congestion. Operations Research Letters, 39(5), 329–337.
de Camargo, R.S., de Miranda Jr., G. & Løkketangen, A. (2013). A new formulation and an exact approach for the many-to-many hub location-routing problem. Applied Mathematical Modelling, 37(12–13), 7465–7480.
Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems. European Journal of Operational Research, 72(2), 387-405.
Campbell, J.F. & O’Kelly, M.E. (2012). Twenty-five years of hub location research. Transportation Science, 46, 153–169.
Contreras, I., Cordeau, J.F. & Laporte, G. (2011a). Benders decomposition for large-scale uncapacitated hub location. Operations Research, 59(6), 1477–1490.
Contreras, I., Cordeau, J.F. & Laporte, G. (2011b). Stochastic uncapacitated hub location problem. European Journal of Operational Research, 212(3), 518–528.
Contreras, I., Cordeau, J.F. & Laporte, G. (2012). Exact solution of large-scale hub location problems with multiple capacity levels. Transportation Science, 46(4), 439–459.
Ernst, A.T. & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Science, 4(3), 139–154.
Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M. & Woeginger, G. (2009). Uncapacitated single and multiple allocation p-hub center problems. Computers & Operations Research, 36, 2230–2241.
Farahani, R.Z., Hekmatfar, M., Arabani, A.B. & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64(4) 1096 – 1109.
Gelareh, S. & Nickel, S. (2011). Hub location problems in transportation networks. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1092–1111.
Gelareh, S., Monemi, R.N. & Nickel, S. (2015). Multi-period hub location problems in transportation. Transportation Research Part E: Logistics and Transportation Review, 75, 67 – 94.
Ghaffarinasab, N. & Kara, B.Y. (2019). Benders decomposition algorithms for two variants of the single allocation hub location problem. Networks and Spatial Economics, 19(1), 83–108.
Kara, B.Y. & Tansel, B.C. (2000). On the single-assignment p-hub center problem. European Journal of Operational Research, 125, 648–655.
Kratica, J., & Stanimirović, Z. (2006). Solving the uncapacitated multiple allocation p-hub center problem by genetic algorithm. Asia-Pacific Journal of Operational Research, 23(04), 425-437.
Meraklı, M. & Yaman, H. (2016). Robust intermodal hub location under polyhedral demand uncertainty. Transportation Research Part B: Methodological, 86, 66 – 85.
Meyer, T., Ernst, A. T., & Krishnamoorthy, M. (2009). A 2-phase algorithm for solving the single allocation p-hub center problem. Computers & Operations Research, 36(12), 3143-3151.
O’Kelly, M.E. (1987). A quadratic integer program for the location of interacting hub facilities. European Journal of Operational Research, 32(3), 393–404.
O’Kelly, M.E., Luna, H.P.L., de Camargo, R.S. & de Miranda Jr., G. (2015). Hub location problems with price sensitive demands. Networks and Spatial Economics, 15(4), 917–945
de Sa, E.M., de Camargo, R.S. & de Miranda Jr., G. (2013). An improved benders decomposition algorithm for the tree of hubs location problem. European Journal of Operational Research, 226(2), 185–202.
de Sa, E.M., Contreras, I., Cordeau, J.F., de Camargo, R.S. & de Miranda Jr., G. (2015). The hub line location problem. Transportation Science, 49(3), 500–518.
de Sa, E.M., Morabito, R. & de Camargo, R.S. (2018a). Benders decomposition applied to a robust multiple allocation incomplete hub location problem. Computers & Operations Research, 89, 31–50.
de Sa, E.M., Morabito, R. & de Camargo, R.S. (2018b). Efficient benders decomposition algorithms for the robust multiple allocation incomplete hub location problem with service time requirements. Expert Systems with Applications, 93, 50–61.
Sim, T., Lowe, T.J. & Thomas, B.W. (2009). The stochastic p-hub center problem with service-level constraints. Computers & Operations Research, 36(12), 3166 – 3177.
Taherkhani, G., Alumur, S.A. & Hosseini, S.M. (2019). Benders decomposition for profit maximizing hub location problems with capacity allocation.
Tan, P.Z. & Kara, B.Y. (2007). A hub covering model for cargo delivery systems. Networks, 49(1), 28–39.
Yang, K., Liu, Y., & Yang, G. (2013). An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem. Computers & Industrial Engineering, 64(1), 133-142.
Bashiri, M., Mirzaei, M., & Randall, M. (2013). Modeling fuzzy capacitated p-hub center problem and a genetic algorithm solution. Applied Mathematical Modelling, 37(5), 3513-3525.
Benders, J.F. (1962). Partitioning procedures for solving mixed variables programming problems. Numerisch Mathematik, 4(1), 238–252.
Brimberg, J., Mladenovic, N., Todosijevic, R., & Urosevic, D. (2017a). A basic variable neighborhood search heuristic for the uncapacitated multiple allocation p-hub center problem. Optimization Letters, 11(2), 313-327.
Brimberg, J., Mladenovic, N., Todosijevic, R., & Urosevic, D. (2017b). General variable neighborhood search for the uncapacitated single allocation p-hub center problem. Optimization Letters, 11(2), 377-388.
de Camargo, R.S., de Miranda Jr., G. & Luna, H.P. (2008). Benders decomposition for the uncapacitated multiple allocation hub location problem. Computers & Operations Research, 35(4), 1047–1064.
de Camargo, R.S., de Miranda Jr., G., Ferreira, R.P.M. & Luna, H.P. (2009a). Multiple allocation hub-and-spoke network design under hub congestion. Computers & Operations Research, 36(12), 3097–3106.
de Camargo, R.S., de Miranda Jr., G. & Luna, H.P. (2009b). Benders decomposition for hub location problems with economies of scale. Transportation Science, 43(1), 86–97.
de Camargo, R.S., de Miranda Jr., G. & Ferreira, R.P. (2011). A hybrid outer-approximation/benders decomposition algorithm for the single allocation hub location problem under congestion. Operations Research Letters, 39(5), 329–337.
de Camargo, R.S., de Miranda Jr., G. & Løkketangen, A. (2013). A new formulation and an exact approach for the many-to-many hub location-routing problem. Applied Mathematical Modelling, 37(12–13), 7465–7480.
Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems. European Journal of Operational Research, 72(2), 387-405.
Campbell, J.F. & O’Kelly, M.E. (2012). Twenty-five years of hub location research. Transportation Science, 46, 153–169.
Contreras, I., Cordeau, J.F. & Laporte, G. (2011a). Benders decomposition for large-scale uncapacitated hub location. Operations Research, 59(6), 1477–1490.
Contreras, I., Cordeau, J.F. & Laporte, G. (2011b). Stochastic uncapacitated hub location problem. European Journal of Operational Research, 212(3), 518–528.
Contreras, I., Cordeau, J.F. & Laporte, G. (2012). Exact solution of large-scale hub location problems with multiple capacity levels. Transportation Science, 46(4), 439–459.
Ernst, A.T. & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Science, 4(3), 139–154.
Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M. & Woeginger, G. (2009). Uncapacitated single and multiple allocation p-hub center problems. Computers & Operations Research, 36, 2230–2241.
Farahani, R.Z., Hekmatfar, M., Arabani, A.B. & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64(4) 1096 – 1109.
Gelareh, S. & Nickel, S. (2011). Hub location problems in transportation networks. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1092–1111.
Gelareh, S., Monemi, R.N. & Nickel, S. (2015). Multi-period hub location problems in transportation. Transportation Research Part E: Logistics and Transportation Review, 75, 67 – 94.
Ghaffarinasab, N. & Kara, B.Y. (2019). Benders decomposition algorithms for two variants of the single allocation hub location problem. Networks and Spatial Economics, 19(1), 83–108.
Kara, B.Y. & Tansel, B.C. (2000). On the single-assignment p-hub center problem. European Journal of Operational Research, 125, 648–655.
Kratica, J., & Stanimirović, Z. (2006). Solving the uncapacitated multiple allocation p-hub center problem by genetic algorithm. Asia-Pacific Journal of Operational Research, 23(04), 425-437.
Meraklı, M. & Yaman, H. (2016). Robust intermodal hub location under polyhedral demand uncertainty. Transportation Research Part B: Methodological, 86, 66 – 85.
Meyer, T., Ernst, A. T., & Krishnamoorthy, M. (2009). A 2-phase algorithm for solving the single allocation p-hub center problem. Computers & Operations Research, 36(12), 3143-3151.
O’Kelly, M.E. (1987). A quadratic integer program for the location of interacting hub facilities. European Journal of Operational Research, 32(3), 393–404.
O’Kelly, M.E., Luna, H.P.L., de Camargo, R.S. & de Miranda Jr., G. (2015). Hub location problems with price sensitive demands. Networks and Spatial Economics, 15(4), 917–945
de Sa, E.M., de Camargo, R.S. & de Miranda Jr., G. (2013). An improved benders decomposition algorithm for the tree of hubs location problem. European Journal of Operational Research, 226(2), 185–202.
de Sa, E.M., Contreras, I., Cordeau, J.F., de Camargo, R.S. & de Miranda Jr., G. (2015). The hub line location problem. Transportation Science, 49(3), 500–518.
de Sa, E.M., Morabito, R. & de Camargo, R.S. (2018a). Benders decomposition applied to a robust multiple allocation incomplete hub location problem. Computers & Operations Research, 89, 31–50.
de Sa, E.M., Morabito, R. & de Camargo, R.S. (2018b). Efficient benders decomposition algorithms for the robust multiple allocation incomplete hub location problem with service time requirements. Expert Systems with Applications, 93, 50–61.
Sim, T., Lowe, T.J. & Thomas, B.W. (2009). The stochastic p-hub center problem with service-level constraints. Computers & Operations Research, 36(12), 3166 – 3177.
Taherkhani, G., Alumur, S.A. & Hosseini, S.M. (2019). Benders decomposition for profit maximizing hub location problems with capacity allocation.
Tan, P.Z. & Kara, B.Y. (2007). A hub covering model for cargo delivery systems. Networks, 49(1), 28–39.
Yang, K., Liu, Y., & Yang, G. (2013). An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem. Computers & Industrial Engineering, 64(1), 133-142.