How to cite this paper
Kumar, T & Purusotham, S. (2018). The degree constrained k-cardinality minimum spanning tree problem: a lexi-search algorithm.Decision Science Letters , 7(3), 301-310.
Refrences
Arya, S., & Ramesh, H. (1998). A 2.5-factor approximation algorithm for the k-MST problem. Information Processing Letters, 65(3), 117–118.
Blum, A., Ravi, R., & Vempala, S. (1996, July). A constant-factor approximation algorithm for the k MST problem. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (pp. 442–448). ACM.
Blum, C., & Blesa, M. J. (2005). New metaheuristic approaches for the edge-weighted k- cardinality tree problem. Computers & Operations Research, 32(6), 1355–1377.
Doan, M. N. (2007, September). An effective ant-based algorithm for the degree-constrained minimum spanning tree problem. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on (pp. 485–491). IEEE.
Garg, N., Hochbaum, D. (1997). An O(log k) approximation algorithm for the k minimum spanning tree problem in the plane. Algorithmica, 18(1), 111–121.
Hamacher, H.W., Jorsten, K., & Maffioli, F. (1991). Weighted k-cardinality trees. Technical Report, 91.023, Politecnico di Milano, Dipartimento di Elettronica, Italy.
Hanr, L., & Wang, Y. (2006). A novel genetic algorithm for degree-constrained minimum spanning tree problem. International Journal of computer science and Network Security, 6(7A), 50–57.
Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations (pp. 85–103). Springer US.
Katagiri, H., Hayashida, T., Nishizaki, I., & Ishimatsu, J. (2010). An approximate solution method based on tabu search for k-minimum spanning tree problems. International Journal of Knowledge Engineering and Soft Data Paradigms, 2(3), 263–274.
Katagiri, H., Hayashida, T., Nishizaki, I., & Guo, Q. (2012). A hybrid algorithm based on tabu search and ant colony optimization for k-minimum spanning tree problems. Expert Systems with Applications, 39(5), 5681–5686.
Katagiri, H., & Guo, Q. (2013). A Hybrid-Heuristics Algorithm for k-Minimum Spanning Tree Problems. In IAENG Transactions on Engineering Technologies (pp. 167–180). Springer Netherlands.
Ma, B., Hero, A., Gorman, J., & Michel, O. (2000). Image registration with minimum spanning tree algorithm. In Image Processing, 2000. Proceedings. 2000 International Conference on (Vol. 1, pp. 481–484). IEEE.
Martinez, L. C., & Da Cunha, A. S. (2014). The min-degree constrained minimum spanning tree problem: Formulations and Branch-and-cut algorithm. Discrete Applied Mathematics, 164, 210–224.
Martins, P., & de Souza, M. C. (2009). VNS and second order heuristics for the min-degree constrained minimum spanning tree problem. Computers & Operations Research, 36(11), 2969–2982.
Pandit, S. N. (1962). The loading problem. Operations Research, 10(5), 639–646.
Purusotham, S. & Sundara Murthy, M. (2012). A new approach for solving the network problems, OPSEARCH, 49(1), 1-21.
Philpott, A. B., & Wormald, N. C. (2000). On the Optimal Extraction of Ore from an Open Cast Mine. Department of Engineering Science, University of Auckland.
Ravi, R., Sundaram, R., Marathe, M. V., Rosenkrantz, D. J., & Ravi, S. S. (1996). Spanning trees—short or small. SIAM Journal on Discrete Mathematics, 9(2), 178–200.
Sundara Murthy, M. (1979). Combinatorial programming problems - A pattern recognition approach. Ph.D Thesis, REC, Warangal, India.
Torkestani, J. A. (2013). Degree constrained minimum spanning tree problem: a learning automata approach. The Journal of Supercomputing, 64(1), 226–249.
TSBLIB: https://github.com/pdrozdowski/TSPLib.Net/tree/master/TSPLIB95/tsp
Blum, A., Ravi, R., & Vempala, S. (1996, July). A constant-factor approximation algorithm for the k MST problem. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (pp. 442–448). ACM.
Blum, C., & Blesa, M. J. (2005). New metaheuristic approaches for the edge-weighted k- cardinality tree problem. Computers & Operations Research, 32(6), 1355–1377.
Doan, M. N. (2007, September). An effective ant-based algorithm for the degree-constrained minimum spanning tree problem. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on (pp. 485–491). IEEE.
Garg, N., Hochbaum, D. (1997). An O(log k) approximation algorithm for the k minimum spanning tree problem in the plane. Algorithmica, 18(1), 111–121.
Hamacher, H.W., Jorsten, K., & Maffioli, F. (1991). Weighted k-cardinality trees. Technical Report, 91.023, Politecnico di Milano, Dipartimento di Elettronica, Italy.
Hanr, L., & Wang, Y. (2006). A novel genetic algorithm for degree-constrained minimum spanning tree problem. International Journal of computer science and Network Security, 6(7A), 50–57.
Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations (pp. 85–103). Springer US.
Katagiri, H., Hayashida, T., Nishizaki, I., & Ishimatsu, J. (2010). An approximate solution method based on tabu search for k-minimum spanning tree problems. International Journal of Knowledge Engineering and Soft Data Paradigms, 2(3), 263–274.
Katagiri, H., Hayashida, T., Nishizaki, I., & Guo, Q. (2012). A hybrid algorithm based on tabu search and ant colony optimization for k-minimum spanning tree problems. Expert Systems with Applications, 39(5), 5681–5686.
Katagiri, H., & Guo, Q. (2013). A Hybrid-Heuristics Algorithm for k-Minimum Spanning Tree Problems. In IAENG Transactions on Engineering Technologies (pp. 167–180). Springer Netherlands.
Ma, B., Hero, A., Gorman, J., & Michel, O. (2000). Image registration with minimum spanning tree algorithm. In Image Processing, 2000. Proceedings. 2000 International Conference on (Vol. 1, pp. 481–484). IEEE.
Martinez, L. C., & Da Cunha, A. S. (2014). The min-degree constrained minimum spanning tree problem: Formulations and Branch-and-cut algorithm. Discrete Applied Mathematics, 164, 210–224.
Martins, P., & de Souza, M. C. (2009). VNS and second order heuristics for the min-degree constrained minimum spanning tree problem. Computers & Operations Research, 36(11), 2969–2982.
Pandit, S. N. (1962). The loading problem. Operations Research, 10(5), 639–646.
Purusotham, S. & Sundara Murthy, M. (2012). A new approach for solving the network problems, OPSEARCH, 49(1), 1-21.
Philpott, A. B., & Wormald, N. C. (2000). On the Optimal Extraction of Ore from an Open Cast Mine. Department of Engineering Science, University of Auckland.
Ravi, R., Sundaram, R., Marathe, M. V., Rosenkrantz, D. J., & Ravi, S. S. (1996). Spanning trees—short or small. SIAM Journal on Discrete Mathematics, 9(2), 178–200.
Sundara Murthy, M. (1979). Combinatorial programming problems - A pattern recognition approach. Ph.D Thesis, REC, Warangal, India.
Torkestani, J. A. (2013). Degree constrained minimum spanning tree problem: a learning automata approach. The Journal of Supercomputing, 64(1), 226–249.
TSBLIB: https://github.com/pdrozdowski/TSPLib.Net/tree/master/TSPLIB95/tsp