How to cite this paper
Trisna, T., Marimin, M., Arkeman, Y & Sunarti, T. (2016). Multi-objective optimization for supply chain management problem: A literature review.Decision Science Letters , 5(2), 283-316.
Refrences
Abraham, A., & Jain, L. (2005). Evolutionary Multiobjective Optimization. In Evolutionary Multiobjective Optimization Theoretical Advances and Applications (pp. 19–24).
Al Jadaan, O., Rao, C. R., & Rajamani, L. (2006). Parametric study to enhance genetic algorithm performance, using ranked based roulette wheel selection method. In International Conference on Multidisciplinary Information Sciences and Technology (InSciT2006) (Vol. 2, pp. 274–278).
Al-e-Hashem, S. M. J. M., Baboli, A., Sadjadi, S. J., & Aryanezhad, B. M. (2011). A Multiobjective Stochastic Production-Distribution Planning Problem in an Uncertain Environment Considering Risk and Workers Productivity. Mathematical Problems In Engineering, 2011-14. doi: Mathematical Problems in Engineering, 1–14. doi:10.1155/2011/406398
Al-e-hashem, S. M. J. M., Malekly, H., & Aryanezhad, M. B. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. Internastional Journal of Production Economics, 134(1), 28–42. doi:10.1016/j.ijpe.2011.01.027
Altiparmak, F., Gen, M., Lin, L., & Karaoglan, I. (2009). A steady-state genetic algorithm for multi-product supply chain network design. Computers & Industrial Engineering, 56(2), 521–537. doi:10.1016/j.cie.2007.05.012
Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & Industrial Engineering, 51(1), 196–215.
Amin, S. H., & Zhang, G. (2012). An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach. Expert Systems with Applications, 39(8), 6782–6791. doi:10.1016/j.eswa.2011.12.056
Amin, S. H., & Zhang, G. (2013). A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modelling, 37(6), 4165–4176. doi:10.1016/j.apm.2012.09.039
Amodeo, L., Chen, H., & El Hadji, A. (2008). Supply chain inventory optimisation with multiple objectives: An industrial case study. In Advances in Computational Intelligence in Transport, Logistics, and Supply Chain Management (Vol. 144, pp. 211–230).
Andel, T. (1997). Reverse logistics: a second chance to profit: whether through refurbishment or recycling, companies are finding profit in returned products. Transportation & Distribution, 38(7).
Aslam, T., Hedenstierna, P., Ng, A. H. C., & Wang, L. (2011). Multi-objective Optimisation in Manufacturing Supply Chain Systems Design?: A Comprehensive Survey and New Directions. In L. Wang et al. (eds.), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing (pp. 35–70). doi:10.1007/978-0-85729-652-8
Aalam, T., & Ng, A. H. C. (2010). Multi-objective optimization for supply chain management: A literature review and new development. In SCMIS 2010 - Proceedings of 2010 8th International Conference on Supply Chain Management and Information Systems: Logistics Systems and Engineering. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-79551512830 & partnerID=40 & md5=34f57f79313e0ede25f9bcbcae511a71
Atoeia, F. B., Teimorya, E., & Amirib, A. B. (2013). Designing reliable supply chain network with disruption risk. International Journal of Industrial Engineering Computations, 4, 111–126.
Aydin, R., Kwong, C. K., & Ji, P. (2015). Coordination of the closed-loop supply chain for product line design with consideration of remanufactured products. Journal of Cleaner Production. doi:10.1016/j.jclepro.2015.05.116
Azaron, A., Brown, K. N., Tarim, S. A., & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics, 116, 129–138. doi:10.1016/j.ijpe.2008.08.002
Babu, B. V., & Gujarathi, A. M. (2007). Multi-Objective Differential Evolution (MODE) for optimization of supply chain planning and management. In 2007 IEEE Congress on Evolutionary Computation, CEC 2007 (pp. 2732–2739).
Bandyopadhyay, S., & Bhattacharya, R. (2013). Applying modified NSGA-II for bi-objective supply chain problem. Journal of Intelligent Manufacturing, 24, 707–716. doi:10.1007/s10845-011-0617-2
Bandyopadhyay, S., & Bhattacharya, R. (2014). Solving a tri-objective supply chain problem with modified NSGA-II algorithm. Journal of Manufacturing Systems, 33, 41–50. doi:10.1016/j.jmsy.2013.12.001
Benyoucef, L., & Xie, X. (2011). Supply chain design using simulation-based NSGA-II approach. In Multi-objective Evolutionary Optimisation for Product Design and Manufacturing (pp. 455–491). Springer.
Bertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical Science, 8(1), 10–15.
Bhattacharya, R., & Bandyopadhyay, S. (2010). Solving conflicting bi-objective facility location problem by NSGA II evolutionary algorithm. International Journal of Advanced Manufacturing Technology, 51(1-4), 397–414. doi:10.1007/s00170-010-2622-6
Bottani, E., Montanari, R., Rinaldi, M., & Vignali, G. (2015). Modeling and multi-objective optimization of closed loop supply chains: A case study. Computers & Industrial Engineering, 87, 328–342. doi:10.1016/j.cie.2015.05.009
Cardona-Valdés, Y., ?lvarez, A., & Ozdemir, D. (2011). A bi-objective supply chain design problem with uncertainty. Transportation Research Part C: Emerging Technologies, 19(5), 821–832. doi:10.1016/j.trc.2010.04.003
Chankong, V., & Haimes, Y. Y. (1983). Optimization-based methods for multiobjective decision-making-an overview. Large Scale Systems In Information And Decision Technologies, 5(1), 1–33.
Che, Z. H., & Chiang, C. J. (2010). A modified Pareto genetic algorithm for multi-objective build-to-order supply chain planning with product assembly. Advances in Engineering Software, 41, 1011–1022.
Chen, A., Kim, J., Lee, S., & Kim, Y. (2010). Stochastic multi-objective models for network design problem. Expert Systems with Applications, 37(2), 1608–1619. doi:10.1016/j.eswa.2009.06.048
Chen, C., & Lee, W. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers and Chemical Engineering, 28, 1131–1144. doi:10.1016/j.compchemeng.2003.09.014
Cheng, F. Y., & Li, D. (1997). Multiobjective optimization design with Pareto genetic algorithm. Journal of Structural Engineering, 123(9), 1252–1261.
Cheshmehgaz, H. R., Desa, M. I., & Wibowo, A. (2013). A flexible three-level logistic network design considering cost and time criteria with a multi-objective evolutionary algorithm. Intelligent Manufacturing, 24, 277–293. doi:10.1007/s10845-011-0584-7
Chibeles-Martinsa, N., Pinto-Varela, T., Barb?sa-P?voa, A. P., & Novaisa, A. Q. (2012). A Simulated Annealing Algorithm for the Design and Planning of Supply Chains with Economic and Environmental Objectives. In I. D. L. Bogle & M. Fairweather (Eds.), The 22nd European Symposium on Computer Aided Process Engineering, (pp. 21–25). London: Elsevier B.V.
Coello, C. A. C. (1999a). A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems, 1(3), 269–308.
Coello, C. A. C. (1999b). An Updated Survey of Evolutionary Multiobjective Optimization Techniques?: State of the Art and Future Trends. In Congress on Evolutionary Computation (Vol. 1, pp. 3–13).
Coello, C. A. C. (2000). An Updated Survey of GA-Based Multiobjective Optimization Techniques. ACM Computing Surveys (CSUR), 32(2), 109–143.
Coello, C. A. C. (2005). Recent trends in evolutionary multiobjective optimization. In In Evolutionary Multiobjective Optimization (pp. 7–32). London: Springer.
Deb, K. (2001). Multi-objective Optimization Using Evolutionary. New York: John Wiley & Sons.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2), 182–197.
Donoso, Y., & Fabregat, R. (2007). Multi-objective optimization in computer networks using metaheuristics. New York (US): Taylor & Francis Group.
Dzupire, N. C., & Nkansah-gyekye, Y. (2014). A Multi-Stage Supply Chain Network Optimization Using Genetic Algorithms. Mathematical Theory and Modeling, 4(8), 18–29.
Farahani, R. Z., & Elahipanah, M. (2008). A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a supply chain. Internastional Journal of Production Economics, 111, 229–243. doi:10.1016/j.ijpe.2006.11.028
Fonseca, C. M., & Fleming, P. J. (1993). Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In ICGA (Vol. 93, pp. 416–423).
Fonsecay, C. M., & Fleming, P. J. (1995). An Overview of Evolutionary Algorithms in. Evolutionary Computation, 3(1), 1–16.
Franca, R. B., Jones, E. C., Richards, C. N., & Carlson, J. P. (2010). Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality. International Journal of Production Economics, 127, 292–299. doi:10.1016/j.ijpe.2009.09.005
Ganeshan, R., & Harrison, T. P. (1995). introduction to supply chain management. Penn State University.
Gen, M., & Cheng, R. (2000). Genetic Algorithms and Engineering Optimization. New York (US): John Wiley & Sons.
Ghorbani, M., Arabzad, S. ., & Tavakkoli-Moghaddam, R. (2014). A multi-objective fuzzy goal programming model for reverse supply chain design. International Journal of Operational Research, 19(2), 141–153. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84893288579 & partnerID=40 & md5=97ed2ab25c3e8103b9b6b031fd4066f6
Godichaud, M., & Amodeo, L. (2015). Efficient multi-objective optimization of supply chain with returned products. Journal of Manufacturing Systems. doi:10.1016/j.jmsy.2014.12.004
Govindan, K., Jafarian, A., & Nourbakhsh, V. (2015). Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Computers and Operation Research, 62, 112–130. doi:10.1016/j.cor.2014.12.014
Guillen, G., Mele, F. D., Bagajewicz, M. J., Espuna, A., & Puigjaner, L. (2005). Multiobjective supply chain design under uncertainty. Chemical Engineering Science, 60(6), 1535-1553, 60(6), 1535–1553.
Guo, S.-M., & Houi, C.-W. (2012). Multi-objective Optimization for LCD Supplier Hub Operations. Japn Ind Manage Assoc, 63, 94–104.
Gupta, A., & Evans, G. W. (2009). A goal programming model for the operation of closed-loop supply chains. Engineering Optimization, 41(8), 713–735.
Haimes, Y. Y., Lasdon, L. S., & Wismer, D. A. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems Man and Cybernetics, (1), 296–297.
Hasan Selim, & Ozkarahan, I. (2008). Collaborative production-distribution planning in supply chain: a fuzzy goal programming approach. Transportation Research Part E Logistics and Transportation Review, 44, 396–419. doi:10.1016/j.tre.2006.11.001
Hiremath, N. C., Sahu, S., & Tiwari, M. K. (2013). Multi objective outbound logistics network design for a manufacturing supply chain. Intelligent Manufacturing, 24, 1071–1084. doi:10.1007/s10845-012-0635-8
Iris, C., & Asan, S. S. (2012). A Review of Genetic Algorithm Applications in Supply Chain Network Design. In C. Kahraman (Ed.), Computational Intelligence Systems in Industrial Engineering (Vol. 6, pp. 203–230). Paris: Atlantis Press. doi:10.2991/978-94-91216-77-0
Iris, C., & Serdarasan, S. (2012). A Review of Genetic Algorithm Applications in Supply Chain Network Design. In Computational Intelligence Systems in Industrial Engineering (pp. 209–236). Paris: Atlantis Press Book.
Ishibuchi, H., & Murata, T. (1998). A multi-objective genetic local search algorithm and its application to flowshop scheduling. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 28(3), 392–403.
Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008). Evolutionary Many-Objective Optimization: A Short Review. In IEEE Congress on Evolutionary Computation (pp. 2424–2431).
Jamshidi, R., Fatemi Ghomi, S. M. T., & Karimi, B. (2012). Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method. Scientia Iranica, 19(6), 1876–1886. doi:10.1016/j.scient.2012.07.002
Jamuna, K., & Swarup, K. . (2012). Multi-objective biogeography based optimization for optimal PMU placement. Appl Soft Comput 12:1503–10. Appl Soft Comput, 12, 1503–1510.
Jia, L., Feng, X., & Guocheng, Z. (2013). Solving Multiobjective Bilevel Transportation-distribution Planning Problem by Modified NSGA II. In Ninth International Conference on Computational Intelligence and Security (pp. 303–307). doi:10.1109/CIS.2013.71
Joines, J. A., King, R. E., & Kay, M. G. (2002). Supply Chain Multi-Objective Simulation Optimization. In the 2002 Winter Simulation Conference (pp. 1306–1314).
Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective meta-heuristics?: An overview of the current. European Journal of Operational Research, 137, 1–9.
Kamali, A., Fatemi Ghomi, S. M. T., & Jolai, F. (2011). A multi-objective quantity discount and joint optimization model for coordination of a single-buyer multi-vendor supply chain. Computers and Mathematics with Applications, 62(8), 3251–3269.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE International Conference on, 4, 1942–1948 vol.4. doi:10.1109/ICNN.1995.488968
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–679.
Kleeman, M. P., Lamont, G. B., Hopkinson, K. M., & Graham, S. R. (2007). Solving Multicommodity Capacitated Network Design Problems using a Multiobjective Evolutionary Algorithm. In The 2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications (CISDA 2007) (pp. 33–41).
Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety, 91(9), 992–1007. doi:10.1016/j.ress.2005.11.018
Latha Shankar, B., Basavarajappa, S., Chen, J. C. H., & Kadadevaramath, R. S. (2013). Location and allocation decisions for multi-echelon supply chain network – A multi-objective evolutionary approach. Expert Systems with Applications, 40, 551–562. doi:10.1016/j.eswa.2012.07.065
Latha Shankar, B., Basavarajappa, S., Kadadevaramath, R. S., & Chen, J. C. H. (2013). A bi-objective optimization of supply chain design and distribution operations using Non-Dominated Sorting algorithm?: A case study. EXPERT SYSTEMS WITH APPLICATIONS. doi:10.1016/j.eswa.2013.03.047
Liang, T.-F. (2008). Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain. Computers & Industrial Engineering, 55(3), 676–694. doi:10.1016/j.cie.2008.02.008
Liang, W. Y., Huang, C.-C., Lin, Y.-C., Chang, T. H., & Shih, M. H. (2013). The multi-objective label correcting algorithm for supply chain modeling. International Journal of Production Economics, 142, 172–178.
Liao, S.-H., Hsieh, C.-L., & Lai, P.-J. (2011). An evolutionary approach for multi-objective optimization of the integrated location–inventory distribution network problem in vendor-managed inventory. Expert Systems with Applications, 38(6), 6768–6776. doi:10.1016/j.eswa.2010.12.072
Liao, Z., & Rittscher, J. (2007). A multi-objective supplier selection model under stochastic demand conditions. Internastional Journal of Production Economics, 105, 2006–2008. doi:10.1016/j.ijpe.2006.03.001
Lin, L., & Gen, M. (2009). Multiobjective Genetic Algorithm for Bicriteria Network Design Problems. In Intelligent and Evolutionary Systems (Vol. 187, pp. 141–162). Springer.
Liu, Q., Zhang, C., Zhu, K., & Rao, Y. (2014). Novel multi-objective resource allocation and activity scheduling for fourth party logistics. Computers & Operations Research, 44, 42–51. doi:10.1016/j.cor.2013.10.010
Liu, S., & Papageorgiou, L. G. (2013). Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry. Omega, 41, 369–382. doi:10.1016/j.omega.2012.03.007
Liu, Z., Qiu, T., & Chen, B. (2014). A study of the LCA based biofuel supply chain multi-objective optimization model with multi-conversion paths in China. Applied Energy, 126, 221–234. doi:10.1016/j.apenergy.2014.04.001
Mahnam, M., Yadollahpour, M. R., Famil-Dardashti, V., & Hejazi, S. R. (2009). Supply chain modeling in uncertain environment with bi-objective approach. Computers and Industrial Engineering, 56(4), 1535–1544. doi:10.1016/j.cie.2008.09.038
Mansouri, S. A. (2006). A simulated annealing approach to a bi-criteria sequencing problem in a two-stage supply chain. Computers & Industrial Engineering, 50(1-2), 105–119. doi:10.1016/j.cie.2006.01.002
Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395. doi:10.1007/s00158-003-0368-6
Mastrocinque, E., Yuce, B., Lambiase, A., & Packianather, M. S. (2013). A Multi-Objective Optimization for Supply Chain Network Using the Bees Algorithm. International Journal of Engineering Business Management, 5(28), 1–11. doi:10.5772/56754
Michalewicz, Z., Vignaux, G. ., & Hobbs, M. (1991). A nonstandard genetic algorithm for the nonlinear transportation problem. ORSA Journal on Computing, 3(4), 307–316.
Minella, G., Ruiz, R., & Ciavotta, M. (2007). A review and evaluation of multi-objective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing, 20(3), 451–471.
Moghaddam, K. S. (2015). Fuzzy Multi-Objective Model for Supplier Selection and Order Allocation in. EXPERT SYSTEMS WITH APPLICATIONS. doi:10.1016/j.eswa.2015.02.010
Moncayo-Mart?nez, L. A., & Zhang, D. Z. (2011). Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design. International Journal of Production Economics, 131(1), 407–420. doi:10.1016/j.ijpe.2010.11.026
Moncayo-Mart?nez, L. A., & Zhang, D. Z. (2013). Optimising safety stock placement and lead time in an assembly supply chain using bi-objective MAX–MIN ant system. Internastional Journal of Production Economics, 145(18-28).
Moncayo-Mart?nez, L. A., & Zhang, D. Z. (2014). A Multi-objective Optimization for Supply Chain Network using Intelligent Water Drop. In IIE Annual Conference. Proceedings (p. 3191).
Mousavi, S. M., Alikar, N., Niaki, S. T. A., & Bahreininejad, A. (2015). Optimizing a location allocation-inventory problem in a two-echelon supply chain network A modified Fruit Fly optimization algorithm. Computers & Industrial Engineering, 87, 543–560. doi:10.1016/j.cie.2015.05.022
Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Multi-objective genetic algorithm and its applications to flowshop scheduling. Computers & Industrial Engineering, 30(4), 957–968.
Nekooghadirli, N., Tavakkoli Moghaddam, R., Ghezavati, V. R., & Javanmard, S. (2014). Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics. Computers & Industrial Engineering, 76, 204–221. doi:http://dx.doi.org/10.1016/j.cie.2014.08.004
Nikabadi, M. S., & Farahmand, H. (2014). Integrated Supply Chain Model under Uncertainty. Global Journal of Management Studies and Researches, 1(3), 1(3), 151–157.
Nooraie, S. V., & Mellat Parast, M. (2015). A multi-objective approach to supply chain risk management: Integrating visibility with supply and demand risk. International Journal of Production Economics, 161, 192–200. doi:10.1016/j.ijpe.2014.12.024
Nurjanni, K. P., Carvalho, M. S., Costa, L. A. A. F., & Fauzun. (2014). Green Supply Chain Design with Multi-Objective Optimization. In Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management (pp. 488–497). Bali, Indonesia.
?zceylan, E., & Paksoy, T. (2013). Fuzzy multi-objective linear programming approach for optimising a closed-loop supply chain network. International Journal of Production Research, 51(8), 2443–2461. doi:10.1080/00207543.2012.740579
Ozgen, D., & Gulsun, B. (2014). Combining possibilistic linear programming and fuzzy AHP for solving the multi-objective capacitated multi-facility location problem. Information Sciences, 268, 185–201.
?zkir, V., & Basligil, H. (2013). Multi-objective optimization of closed-loop supply chains in uncertain environment. Cleaner Production, 41, 114–125. doi:10.1016/j.jclepro.2012.10.013
Paksoy, T., ?zceylan, E., & Weber, G. (2010). A multi objective model for optimization of a green supply chain network. In AIP Conference Proceedings.
Pan, W.-T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, 69–74.
Pareto, V. (1906). Manuale di economia politica. (A. S. Schwier & A.N., Eds.) (Vol. 13). Milan: Societa Editrice.
Pasandideh, S. H. R., Niaki, S. T. A., & Asadi, K. (2015a). Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA. Information Sciences, 292, 57–74. doi:10.1016/j.ins.2014.08.068
Pasandideh, S. H. R., Niaki, S. T. A., & Asadi, K. (2015b). Optimizing a bi-objective multi-product multi-period three echelon supply chain network with warehouse reliability. Expert Systems with Applications, 42(5), 2615–2623. doi:10.1016/j.eswa.2014.11.018
Pishvaee, M. S., Farahani, R. Z., & Dullaert, W. (2010). A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers and Operation Research, 37, 1100–1112. doi:10.1016/j.cor.2009.09.018
Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling, 36(8), 3433–3446. doi:10.1016/j.apm.2011.10.007
Pishvaee, M. S., & Torabi, S. a. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets and Systems, 161(20), 2668–2683. doi:10.1016/j.fss.2010.04.010
Pourrousta, A., Dehbari, S., Tavakkoli-Moghaddam, R., & Sadegh Amalnik, M. (2012). A multi-objective particle swarm optimization for production-distribution planning in supply chain network. Management Science Letters, 2(2), 603–614. doi:10.5267/j.msl.2011.11.012
Prasannavenkatesan, S., & Kumanan, S. (2012). Multi-objective supply chain sourcing strategy design under risk using PSO and simulation. Intelligent Journal Advance Manufacturing Technology, 61, 325–337. doi:10.1007/s00170-011-3710-y
Rad, S. Y. B., Desa, M. I., & Azari, S. D. (2014). Model and Solve the Bi-Criteria Multi Source Flexible Multistage Logistics Network. International Journal of Advanced Computer Science and Information Technology, 3(1), 50–69.
Reyes-sierra, M., & Coello, C. A. C. (2006). Multi-Objective Particle Swarm Optimizers?: A Survey of the State-of-the-Art. International Journal of Computational Intelliigence Research, 2(3), 287–308.
Rezaei, J., & Davoodi, M. (2011). Multi-objective models for lot-sizing with supplier selection. International Journal of Production Economics, 130(1), 77–86.
Ruiz-Femenia, R., Guillen-Gosalbez, G., Jimenez, L., & Caballero, J. A. (2013). Multi-objective optimization of environmentally conscious chemical supply chains under demand uncertainty. Chemical Engineering Science, 95, 1–11. doi:10.1016/j.ces.2013.02.054
Sadeghi, J., Mousavi, S. M., Niaki, S. T. A., & Sadeghi, S. (2014). Optimizing a bi-objective inventory model of a three-echelon supply chain using a tuned hybrid bat algorithm. Transportation Research Part E, 70, 274–292. doi:10.1016/j.tre.2014.07.007
Safaei, M. (2014). An integrated multi-objective model for allocating the limited sources in a multiple multi-stage lean supply chain. Economic Modelling, 37, 224–237. doi:10.1016/j.econmod.2013.10.018
Saffar, M. M., G, H. S., & Razmi, J. (2015). A new multi objective optimization model for designing a green supply chain network under uncertainty. International Journal of Industrial Engineering Computations, 6, 15–32. doi:10.5267/j.ijiec.2014.10.001
Sarrafha, K., Rahmati, S. H., Niaki, S. T. A., & Zaretalab, A. (2015). A bi-objective integrated procurement, production, and distribution problem of a multi-echelon supply chain network design: A new tuned MOEA. Computers & Operations Research, 54, 35–51. doi:10.1016/j.cor.2014.08.010
Schaffer, J. D. (1985a). Multiple objective optimization with vector evaluated genetic algorithms. … the 1st International Conference on Genetic Algorithms, 93–100. Retrieved from http://dl.acm.org/citation.cfm?id=657079
Schaffer, J. D. (1985b). Some experiments in machine learning using vector evaluated genetic algorithms.
Selim, H., Araz, C., & Ozkarahan, I. (2008). Collaborative production--distribution planning in supply chain: a fuzzy goal programming approach. Transportation Research Part E: Logistics and Transportation Review, 44(3), 396–419.
Serrano, V., Alvarado, M., & Coello, C. A. C. (2007). Optimization to manage supply chain disruptions using the NSGA-II. In Theoretical Advances and Applications of Fuzzy Logic and Soft Computing (pp. 476–485). Berlin: Springer Berlin Heidelberg.
Seshadri, A. (2006). Multi-objective optimization using evolutionary algorithms (MOEA). Matlab Website: Http://www. Mathworks. com/matlabcentral/fileexchange/10429, by, 19.
Shahparvari, S., Chiniforooshan, P., & Abareshi, A. (2013). Designing an Integrated Multi-objective Supply Chain Network Considering Volume Flexibility. In Proceedings of the World Congress on Engineering and Computer Science (Vol. 2). San Francisco.
Simon, D. (2008). Biogeography-based optimization. Evolutionary Computation, IEEE Transactions on, 12(6), 702–13.
Srinivas, N., & Deb, K. (1994). Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221–248.
Sun, R. S. R., Wang, X. W. X., & Zhao, G. Z. G. (2008). An Ant Colony Optimization Approach to Multi-Objective Supply Chain Model. In Second International Conference on Secure System Integration and Reliability Improvement (pp. 193–194). doi:10.1109/SSIRI.2008.35
Thomas, D. J., & Griffin, P. M. (1996). Coordinated supply chain management. European Journal of Operational Research, 94, 1–15. European Journal of Operational Research, 94, 1–15.
Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193–214. doi:10.1016/j.fss.2007.08.010
Tsai, W. ., & Hung, S.-J. (2009). A fuzzy goal programming approach for green supply chain optimisation under activity-based costing and performance evaluation with a value-chain structure. International Journal of Production Research, 47(18), 4991–5017.
vahdani, B., & Mohamadi, M. (2015). A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system. International Journal of Production Economics. doi:10.1016/j.ijpe.2015.08.020
Validi, S., Bhattacharya, A., & Byrne, P. J. (2014). A case analysis of a sustainable food supply chain distribution system — A multi-objective approach. International Journal of Production Economics, 1–17. doi:10.1016/j.ijpe.2014.02.003
Van Veldhuizen, D. A., & Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation, 8(2), 125–147.
Wang, F., Lai, X., & Shi, N. (2011). A multi-objective optimization for green supply chain network design. Decision Support Systems, 51(2), 262–269. doi:10.1016/j.dss.2010.11.020
Weber, C., & Current, J. (1993). A multi-objective approach to vendor selection. European Journal of Operational Research, 68, 173–184.
Wei, P., & Xu, J. (2011). The optimum order strategy from multiple suppliers with alternative quantity discounts. World Journal of Modelling and Simulation, 7(3), 218–229.
Xu, J., Liu, Q., & Wang, R. (2008). A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor. Information Sciences, 178(8), 2022–2043. doi:10.1016/j.ins.2007.11.025
Yahia, W. Ben, Cheikhrouhou, N., Ayadi, O., & Masmoudi, F. (2013). A Multi-objective Optimization for Multi-period Planning in Multi-item Cooperative. In M. Haddar et al. (Eds.): Design and Modeling of Mechanical Systems, LNME (pp. 635–643). doi:10.1007/978-3-642-37143-1
Yang, G.-Q., Liu, Y.-K., & Yang, K. (2015). Multi-objective biogeography-based optimization for supply chain network design under uncertainty. Computers & Industrial Engineering. doi:http://dx.doi.org/ 10.1016/j.cie.2015.03.008
Yeh, W.-C., & Chuang, M.-C. (2011). Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert Systems with Applications, 38(4), 4244–4253. doi:10.1016/j.eswa.2010.09.091
You, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal Design of Sustainable Cellulosic Biofuel Supply Chains?: Multiobjective Optimization Coupled with Life Cycle Assessment and Input – Output Analysis. AIChE Journal, 58(4), 1157–1180. doi:10.1002/aic
Yuce, B., Mastrocinque, E., Lambiase, A., Packianather, M. S., & Pham, D. T. (2014). A multi-objective supply chain optimisation using enhanced Bees Algorithm with adaptive neighbourhood search and site abandonment strategy. Swarm and Evolutionary Computation, 18, 71–82. doi:10.1016/j.swevo.2014.04.002
Zarandi, M. H. F., Sisakht, A. H., & Davari, S. (2011). Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming. The International Journal of Advanced Manufacturing Technology, 56(5-8), 809–821.
Zhang, A., Luo, H., & Huang, G. Q. (2013). A bi-objective model for supply chain design of dispersed manufacturing in China. Internastional Journal of Production Economics, 146(1), 48–58. doi:10.1016/j.ijpe.2012.12.008
Zhang, Z., & Xu, J. (2014). Applying nonlinear MODM model to supply chain management with quantity discount policy under complex fuzzy environment. Journal of Industrial Engineering and Management, 7(3), 660–680.
Zhao, F., Tang, J., & Yang, Y. (2012). A new Approach based on Ant Colony Optimization ( ACO ) to Determine the Supply Chain ( SC ) Design for a Product Mix. Computer, 7(3), 736–743. doi:10.4304/jcp.7.3.736-742
Zhao, F., Tang, J., & Yang, Y. (2012). A new Approach based on Ant Colony Optimization (ACO) to Determine the Supply Chain (SC) Design for a Product Mix. Journal of Computers, 7(3), 736–743. doi:10.4304/jcp.7.3.736-742
Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32–49. doi:10.1016/j.swevo.2011.03.001
Zitzler, E., Laumanns, M., Thiele, L., Zitzler, E., Zitzler, E., Thiele, L., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Eidgen{?}ssische Technische Hochschule Z{ü}rich (ETH), Institut f{ü}r Technische Informatik und Kommunikationsnetze (TIK).
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Evolutionary Computation, IEEE Transactions on, 3(4), 257–271.
Al Jadaan, O., Rao, C. R., & Rajamani, L. (2006). Parametric study to enhance genetic algorithm performance, using ranked based roulette wheel selection method. In International Conference on Multidisciplinary Information Sciences and Technology (InSciT2006) (Vol. 2, pp. 274–278).
Al-e-Hashem, S. M. J. M., Baboli, A., Sadjadi, S. J., & Aryanezhad, B. M. (2011). A Multiobjective Stochastic Production-Distribution Planning Problem in an Uncertain Environment Considering Risk and Workers Productivity. Mathematical Problems In Engineering, 2011-14. doi: Mathematical Problems in Engineering, 1–14. doi:10.1155/2011/406398
Al-e-hashem, S. M. J. M., Malekly, H., & Aryanezhad, M. B. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. Internastional Journal of Production Economics, 134(1), 28–42. doi:10.1016/j.ijpe.2011.01.027
Altiparmak, F., Gen, M., Lin, L., & Karaoglan, I. (2009). A steady-state genetic algorithm for multi-product supply chain network design. Computers & Industrial Engineering, 56(2), 521–537. doi:10.1016/j.cie.2007.05.012
Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & Industrial Engineering, 51(1), 196–215.
Amin, S. H., & Zhang, G. (2012). An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach. Expert Systems with Applications, 39(8), 6782–6791. doi:10.1016/j.eswa.2011.12.056
Amin, S. H., & Zhang, G. (2013). A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modelling, 37(6), 4165–4176. doi:10.1016/j.apm.2012.09.039
Amodeo, L., Chen, H., & El Hadji, A. (2008). Supply chain inventory optimisation with multiple objectives: An industrial case study. In Advances in Computational Intelligence in Transport, Logistics, and Supply Chain Management (Vol. 144, pp. 211–230).
Andel, T. (1997). Reverse logistics: a second chance to profit: whether through refurbishment or recycling, companies are finding profit in returned products. Transportation & Distribution, 38(7).
Aslam, T., Hedenstierna, P., Ng, A. H. C., & Wang, L. (2011). Multi-objective Optimisation in Manufacturing Supply Chain Systems Design?: A Comprehensive Survey and New Directions. In L. Wang et al. (eds.), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing (pp. 35–70). doi:10.1007/978-0-85729-652-8
Aalam, T., & Ng, A. H. C. (2010). Multi-objective optimization for supply chain management: A literature review and new development. In SCMIS 2010 - Proceedings of 2010 8th International Conference on Supply Chain Management and Information Systems: Logistics Systems and Engineering. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-79551512830 & partnerID=40 & md5=34f57f79313e0ede25f9bcbcae511a71
Atoeia, F. B., Teimorya, E., & Amirib, A. B. (2013). Designing reliable supply chain network with disruption risk. International Journal of Industrial Engineering Computations, 4, 111–126.
Aydin, R., Kwong, C. K., & Ji, P. (2015). Coordination of the closed-loop supply chain for product line design with consideration of remanufactured products. Journal of Cleaner Production. doi:10.1016/j.jclepro.2015.05.116
Azaron, A., Brown, K. N., Tarim, S. A., & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics, 116, 129–138. doi:10.1016/j.ijpe.2008.08.002
Babu, B. V., & Gujarathi, A. M. (2007). Multi-Objective Differential Evolution (MODE) for optimization of supply chain planning and management. In 2007 IEEE Congress on Evolutionary Computation, CEC 2007 (pp. 2732–2739).
Bandyopadhyay, S., & Bhattacharya, R. (2013). Applying modified NSGA-II for bi-objective supply chain problem. Journal of Intelligent Manufacturing, 24, 707–716. doi:10.1007/s10845-011-0617-2
Bandyopadhyay, S., & Bhattacharya, R. (2014). Solving a tri-objective supply chain problem with modified NSGA-II algorithm. Journal of Manufacturing Systems, 33, 41–50. doi:10.1016/j.jmsy.2013.12.001
Benyoucef, L., & Xie, X. (2011). Supply chain design using simulation-based NSGA-II approach. In Multi-objective Evolutionary Optimisation for Product Design and Manufacturing (pp. 455–491). Springer.
Bertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical Science, 8(1), 10–15.
Bhattacharya, R., & Bandyopadhyay, S. (2010). Solving conflicting bi-objective facility location problem by NSGA II evolutionary algorithm. International Journal of Advanced Manufacturing Technology, 51(1-4), 397–414. doi:10.1007/s00170-010-2622-6
Bottani, E., Montanari, R., Rinaldi, M., & Vignali, G. (2015). Modeling and multi-objective optimization of closed loop supply chains: A case study. Computers & Industrial Engineering, 87, 328–342. doi:10.1016/j.cie.2015.05.009
Cardona-Valdés, Y., ?lvarez, A., & Ozdemir, D. (2011). A bi-objective supply chain design problem with uncertainty. Transportation Research Part C: Emerging Technologies, 19(5), 821–832. doi:10.1016/j.trc.2010.04.003
Chankong, V., & Haimes, Y. Y. (1983). Optimization-based methods for multiobjective decision-making-an overview. Large Scale Systems In Information And Decision Technologies, 5(1), 1–33.
Che, Z. H., & Chiang, C. J. (2010). A modified Pareto genetic algorithm for multi-objective build-to-order supply chain planning with product assembly. Advances in Engineering Software, 41, 1011–1022.
Chen, A., Kim, J., Lee, S., & Kim, Y. (2010). Stochastic multi-objective models for network design problem. Expert Systems with Applications, 37(2), 1608–1619. doi:10.1016/j.eswa.2009.06.048
Chen, C., & Lee, W. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers and Chemical Engineering, 28, 1131–1144. doi:10.1016/j.compchemeng.2003.09.014
Cheng, F. Y., & Li, D. (1997). Multiobjective optimization design with Pareto genetic algorithm. Journal of Structural Engineering, 123(9), 1252–1261.
Cheshmehgaz, H. R., Desa, M. I., & Wibowo, A. (2013). A flexible three-level logistic network design considering cost and time criteria with a multi-objective evolutionary algorithm. Intelligent Manufacturing, 24, 277–293. doi:10.1007/s10845-011-0584-7
Chibeles-Martinsa, N., Pinto-Varela, T., Barb?sa-P?voa, A. P., & Novaisa, A. Q. (2012). A Simulated Annealing Algorithm for the Design and Planning of Supply Chains with Economic and Environmental Objectives. In I. D. L. Bogle & M. Fairweather (Eds.), The 22nd European Symposium on Computer Aided Process Engineering, (pp. 21–25). London: Elsevier B.V.
Coello, C. A. C. (1999a). A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems, 1(3), 269–308.
Coello, C. A. C. (1999b). An Updated Survey of Evolutionary Multiobjective Optimization Techniques?: State of the Art and Future Trends. In Congress on Evolutionary Computation (Vol. 1, pp. 3–13).
Coello, C. A. C. (2000). An Updated Survey of GA-Based Multiobjective Optimization Techniques. ACM Computing Surveys (CSUR), 32(2), 109–143.
Coello, C. A. C. (2005). Recent trends in evolutionary multiobjective optimization. In In Evolutionary Multiobjective Optimization (pp. 7–32). London: Springer.
Deb, K. (2001). Multi-objective Optimization Using Evolutionary. New York: John Wiley & Sons.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2), 182–197.
Donoso, Y., & Fabregat, R. (2007). Multi-objective optimization in computer networks using metaheuristics. New York (US): Taylor & Francis Group.
Dzupire, N. C., & Nkansah-gyekye, Y. (2014). A Multi-Stage Supply Chain Network Optimization Using Genetic Algorithms. Mathematical Theory and Modeling, 4(8), 18–29.
Farahani, R. Z., & Elahipanah, M. (2008). A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a supply chain. Internastional Journal of Production Economics, 111, 229–243. doi:10.1016/j.ijpe.2006.11.028
Fonseca, C. M., & Fleming, P. J. (1993). Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In ICGA (Vol. 93, pp. 416–423).
Fonsecay, C. M., & Fleming, P. J. (1995). An Overview of Evolutionary Algorithms in. Evolutionary Computation, 3(1), 1–16.
Franca, R. B., Jones, E. C., Richards, C. N., & Carlson, J. P. (2010). Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality. International Journal of Production Economics, 127, 292–299. doi:10.1016/j.ijpe.2009.09.005
Ganeshan, R., & Harrison, T. P. (1995). introduction to supply chain management. Penn State University.
Gen, M., & Cheng, R. (2000). Genetic Algorithms and Engineering Optimization. New York (US): John Wiley & Sons.
Ghorbani, M., Arabzad, S. ., & Tavakkoli-Moghaddam, R. (2014). A multi-objective fuzzy goal programming model for reverse supply chain design. International Journal of Operational Research, 19(2), 141–153. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84893288579 & partnerID=40 & md5=97ed2ab25c3e8103b9b6b031fd4066f6
Godichaud, M., & Amodeo, L. (2015). Efficient multi-objective optimization of supply chain with returned products. Journal of Manufacturing Systems. doi:10.1016/j.jmsy.2014.12.004
Govindan, K., Jafarian, A., & Nourbakhsh, V. (2015). Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Computers and Operation Research, 62, 112–130. doi:10.1016/j.cor.2014.12.014
Guillen, G., Mele, F. D., Bagajewicz, M. J., Espuna, A., & Puigjaner, L. (2005). Multiobjective supply chain design under uncertainty. Chemical Engineering Science, 60(6), 1535-1553, 60(6), 1535–1553.
Guo, S.-M., & Houi, C.-W. (2012). Multi-objective Optimization for LCD Supplier Hub Operations. Japn Ind Manage Assoc, 63, 94–104.
Gupta, A., & Evans, G. W. (2009). A goal programming model for the operation of closed-loop supply chains. Engineering Optimization, 41(8), 713–735.
Haimes, Y. Y., Lasdon, L. S., & Wismer, D. A. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems Man and Cybernetics, (1), 296–297.
Hasan Selim, & Ozkarahan, I. (2008). Collaborative production-distribution planning in supply chain: a fuzzy goal programming approach. Transportation Research Part E Logistics and Transportation Review, 44, 396–419. doi:10.1016/j.tre.2006.11.001
Hiremath, N. C., Sahu, S., & Tiwari, M. K. (2013). Multi objective outbound logistics network design for a manufacturing supply chain. Intelligent Manufacturing, 24, 1071–1084. doi:10.1007/s10845-012-0635-8
Iris, C., & Asan, S. S. (2012). A Review of Genetic Algorithm Applications in Supply Chain Network Design. In C. Kahraman (Ed.), Computational Intelligence Systems in Industrial Engineering (Vol. 6, pp. 203–230). Paris: Atlantis Press. doi:10.2991/978-94-91216-77-0
Iris, C., & Serdarasan, S. (2012). A Review of Genetic Algorithm Applications in Supply Chain Network Design. In Computational Intelligence Systems in Industrial Engineering (pp. 209–236). Paris: Atlantis Press Book.
Ishibuchi, H., & Murata, T. (1998). A multi-objective genetic local search algorithm and its application to flowshop scheduling. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 28(3), 392–403.
Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008). Evolutionary Many-Objective Optimization: A Short Review. In IEEE Congress on Evolutionary Computation (pp. 2424–2431).
Jamshidi, R., Fatemi Ghomi, S. M. T., & Karimi, B. (2012). Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method. Scientia Iranica, 19(6), 1876–1886. doi:10.1016/j.scient.2012.07.002
Jamuna, K., & Swarup, K. . (2012). Multi-objective biogeography based optimization for optimal PMU placement. Appl Soft Comput 12:1503–10. Appl Soft Comput, 12, 1503–1510.
Jia, L., Feng, X., & Guocheng, Z. (2013). Solving Multiobjective Bilevel Transportation-distribution Planning Problem by Modified NSGA II. In Ninth International Conference on Computational Intelligence and Security (pp. 303–307). doi:10.1109/CIS.2013.71
Joines, J. A., King, R. E., & Kay, M. G. (2002). Supply Chain Multi-Objective Simulation Optimization. In the 2002 Winter Simulation Conference (pp. 1306–1314).
Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective meta-heuristics?: An overview of the current. European Journal of Operational Research, 137, 1–9.
Kamali, A., Fatemi Ghomi, S. M. T., & Jolai, F. (2011). A multi-objective quantity discount and joint optimization model for coordination of a single-buyer multi-vendor supply chain. Computers and Mathematics with Applications, 62(8), 3251–3269.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE International Conference on, 4, 1942–1948 vol.4. doi:10.1109/ICNN.1995.488968
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–679.
Kleeman, M. P., Lamont, G. B., Hopkinson, K. M., & Graham, S. R. (2007). Solving Multicommodity Capacitated Network Design Problems using a Multiobjective Evolutionary Algorithm. In The 2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications (CISDA 2007) (pp. 33–41).
Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety, 91(9), 992–1007. doi:10.1016/j.ress.2005.11.018
Latha Shankar, B., Basavarajappa, S., Chen, J. C. H., & Kadadevaramath, R. S. (2013). Location and allocation decisions for multi-echelon supply chain network – A multi-objective evolutionary approach. Expert Systems with Applications, 40, 551–562. doi:10.1016/j.eswa.2012.07.065
Latha Shankar, B., Basavarajappa, S., Kadadevaramath, R. S., & Chen, J. C. H. (2013). A bi-objective optimization of supply chain design and distribution operations using Non-Dominated Sorting algorithm?: A case study. EXPERT SYSTEMS WITH APPLICATIONS. doi:10.1016/j.eswa.2013.03.047
Liang, T.-F. (2008). Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain. Computers & Industrial Engineering, 55(3), 676–694. doi:10.1016/j.cie.2008.02.008
Liang, W. Y., Huang, C.-C., Lin, Y.-C., Chang, T. H., & Shih, M. H. (2013). The multi-objective label correcting algorithm for supply chain modeling. International Journal of Production Economics, 142, 172–178.
Liao, S.-H., Hsieh, C.-L., & Lai, P.-J. (2011). An evolutionary approach for multi-objective optimization of the integrated location–inventory distribution network problem in vendor-managed inventory. Expert Systems with Applications, 38(6), 6768–6776. doi:10.1016/j.eswa.2010.12.072
Liao, Z., & Rittscher, J. (2007). A multi-objective supplier selection model under stochastic demand conditions. Internastional Journal of Production Economics, 105, 2006–2008. doi:10.1016/j.ijpe.2006.03.001
Lin, L., & Gen, M. (2009). Multiobjective Genetic Algorithm for Bicriteria Network Design Problems. In Intelligent and Evolutionary Systems (Vol. 187, pp. 141–162). Springer.
Liu, Q., Zhang, C., Zhu, K., & Rao, Y. (2014). Novel multi-objective resource allocation and activity scheduling for fourth party logistics. Computers & Operations Research, 44, 42–51. doi:10.1016/j.cor.2013.10.010
Liu, S., & Papageorgiou, L. G. (2013). Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry. Omega, 41, 369–382. doi:10.1016/j.omega.2012.03.007
Liu, Z., Qiu, T., & Chen, B. (2014). A study of the LCA based biofuel supply chain multi-objective optimization model with multi-conversion paths in China. Applied Energy, 126, 221–234. doi:10.1016/j.apenergy.2014.04.001
Mahnam, M., Yadollahpour, M. R., Famil-Dardashti, V., & Hejazi, S. R. (2009). Supply chain modeling in uncertain environment with bi-objective approach. Computers and Industrial Engineering, 56(4), 1535–1544. doi:10.1016/j.cie.2008.09.038
Mansouri, S. A. (2006). A simulated annealing approach to a bi-criteria sequencing problem in a two-stage supply chain. Computers & Industrial Engineering, 50(1-2), 105–119. doi:10.1016/j.cie.2006.01.002
Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395. doi:10.1007/s00158-003-0368-6
Mastrocinque, E., Yuce, B., Lambiase, A., & Packianather, M. S. (2013). A Multi-Objective Optimization for Supply Chain Network Using the Bees Algorithm. International Journal of Engineering Business Management, 5(28), 1–11. doi:10.5772/56754
Michalewicz, Z., Vignaux, G. ., & Hobbs, M. (1991). A nonstandard genetic algorithm for the nonlinear transportation problem. ORSA Journal on Computing, 3(4), 307–316.
Minella, G., Ruiz, R., & Ciavotta, M. (2007). A review and evaluation of multi-objective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing, 20(3), 451–471.
Moghaddam, K. S. (2015). Fuzzy Multi-Objective Model for Supplier Selection and Order Allocation in. EXPERT SYSTEMS WITH APPLICATIONS. doi:10.1016/j.eswa.2015.02.010
Moncayo-Mart?nez, L. A., & Zhang, D. Z. (2011). Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design. International Journal of Production Economics, 131(1), 407–420. doi:10.1016/j.ijpe.2010.11.026
Moncayo-Mart?nez, L. A., & Zhang, D. Z. (2013). Optimising safety stock placement and lead time in an assembly supply chain using bi-objective MAX–MIN ant system. Internastional Journal of Production Economics, 145(18-28).
Moncayo-Mart?nez, L. A., & Zhang, D. Z. (2014). A Multi-objective Optimization for Supply Chain Network using Intelligent Water Drop. In IIE Annual Conference. Proceedings (p. 3191).
Mousavi, S. M., Alikar, N., Niaki, S. T. A., & Bahreininejad, A. (2015). Optimizing a location allocation-inventory problem in a two-echelon supply chain network A modified Fruit Fly optimization algorithm. Computers & Industrial Engineering, 87, 543–560. doi:10.1016/j.cie.2015.05.022
Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Multi-objective genetic algorithm and its applications to flowshop scheduling. Computers & Industrial Engineering, 30(4), 957–968.
Nekooghadirli, N., Tavakkoli Moghaddam, R., Ghezavati, V. R., & Javanmard, S. (2014). Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics. Computers & Industrial Engineering, 76, 204–221. doi:http://dx.doi.org/10.1016/j.cie.2014.08.004
Nikabadi, M. S., & Farahmand, H. (2014). Integrated Supply Chain Model under Uncertainty. Global Journal of Management Studies and Researches, 1(3), 1(3), 151–157.
Nooraie, S. V., & Mellat Parast, M. (2015). A multi-objective approach to supply chain risk management: Integrating visibility with supply and demand risk. International Journal of Production Economics, 161, 192–200. doi:10.1016/j.ijpe.2014.12.024
Nurjanni, K. P., Carvalho, M. S., Costa, L. A. A. F., & Fauzun. (2014). Green Supply Chain Design with Multi-Objective Optimization. In Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management (pp. 488–497). Bali, Indonesia.
?zceylan, E., & Paksoy, T. (2013). Fuzzy multi-objective linear programming approach for optimising a closed-loop supply chain network. International Journal of Production Research, 51(8), 2443–2461. doi:10.1080/00207543.2012.740579
Ozgen, D., & Gulsun, B. (2014). Combining possibilistic linear programming and fuzzy AHP for solving the multi-objective capacitated multi-facility location problem. Information Sciences, 268, 185–201.
?zkir, V., & Basligil, H. (2013). Multi-objective optimization of closed-loop supply chains in uncertain environment. Cleaner Production, 41, 114–125. doi:10.1016/j.jclepro.2012.10.013
Paksoy, T., ?zceylan, E., & Weber, G. (2010). A multi objective model for optimization of a green supply chain network. In AIP Conference Proceedings.
Pan, W.-T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, 69–74.
Pareto, V. (1906). Manuale di economia politica. (A. S. Schwier & A.N., Eds.) (Vol. 13). Milan: Societa Editrice.
Pasandideh, S. H. R., Niaki, S. T. A., & Asadi, K. (2015a). Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA. Information Sciences, 292, 57–74. doi:10.1016/j.ins.2014.08.068
Pasandideh, S. H. R., Niaki, S. T. A., & Asadi, K. (2015b). Optimizing a bi-objective multi-product multi-period three echelon supply chain network with warehouse reliability. Expert Systems with Applications, 42(5), 2615–2623. doi:10.1016/j.eswa.2014.11.018
Pishvaee, M. S., Farahani, R. Z., & Dullaert, W. (2010). A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers and Operation Research, 37, 1100–1112. doi:10.1016/j.cor.2009.09.018
Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied Mathematical Modelling, 36(8), 3433–3446. doi:10.1016/j.apm.2011.10.007
Pishvaee, M. S., & Torabi, S. a. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets and Systems, 161(20), 2668–2683. doi:10.1016/j.fss.2010.04.010
Pourrousta, A., Dehbari, S., Tavakkoli-Moghaddam, R., & Sadegh Amalnik, M. (2012). A multi-objective particle swarm optimization for production-distribution planning in supply chain network. Management Science Letters, 2(2), 603–614. doi:10.5267/j.msl.2011.11.012
Prasannavenkatesan, S., & Kumanan, S. (2012). Multi-objective supply chain sourcing strategy design under risk using PSO and simulation. Intelligent Journal Advance Manufacturing Technology, 61, 325–337. doi:10.1007/s00170-011-3710-y
Rad, S. Y. B., Desa, M. I., & Azari, S. D. (2014). Model and Solve the Bi-Criteria Multi Source Flexible Multistage Logistics Network. International Journal of Advanced Computer Science and Information Technology, 3(1), 50–69.
Reyes-sierra, M., & Coello, C. A. C. (2006). Multi-Objective Particle Swarm Optimizers?: A Survey of the State-of-the-Art. International Journal of Computational Intelliigence Research, 2(3), 287–308.
Rezaei, J., & Davoodi, M. (2011). Multi-objective models for lot-sizing with supplier selection. International Journal of Production Economics, 130(1), 77–86.
Ruiz-Femenia, R., Guillen-Gosalbez, G., Jimenez, L., & Caballero, J. A. (2013). Multi-objective optimization of environmentally conscious chemical supply chains under demand uncertainty. Chemical Engineering Science, 95, 1–11. doi:10.1016/j.ces.2013.02.054
Sadeghi, J., Mousavi, S. M., Niaki, S. T. A., & Sadeghi, S. (2014). Optimizing a bi-objective inventory model of a three-echelon supply chain using a tuned hybrid bat algorithm. Transportation Research Part E, 70, 274–292. doi:10.1016/j.tre.2014.07.007
Safaei, M. (2014). An integrated multi-objective model for allocating the limited sources in a multiple multi-stage lean supply chain. Economic Modelling, 37, 224–237. doi:10.1016/j.econmod.2013.10.018
Saffar, M. M., G, H. S., & Razmi, J. (2015). A new multi objective optimization model for designing a green supply chain network under uncertainty. International Journal of Industrial Engineering Computations, 6, 15–32. doi:10.5267/j.ijiec.2014.10.001
Sarrafha, K., Rahmati, S. H., Niaki, S. T. A., & Zaretalab, A. (2015). A bi-objective integrated procurement, production, and distribution problem of a multi-echelon supply chain network design: A new tuned MOEA. Computers & Operations Research, 54, 35–51. doi:10.1016/j.cor.2014.08.010
Schaffer, J. D. (1985a). Multiple objective optimization with vector evaluated genetic algorithms. … the 1st International Conference on Genetic Algorithms, 93–100. Retrieved from http://dl.acm.org/citation.cfm?id=657079
Schaffer, J. D. (1985b). Some experiments in machine learning using vector evaluated genetic algorithms.
Selim, H., Araz, C., & Ozkarahan, I. (2008). Collaborative production--distribution planning in supply chain: a fuzzy goal programming approach. Transportation Research Part E: Logistics and Transportation Review, 44(3), 396–419.
Serrano, V., Alvarado, M., & Coello, C. A. C. (2007). Optimization to manage supply chain disruptions using the NSGA-II. In Theoretical Advances and Applications of Fuzzy Logic and Soft Computing (pp. 476–485). Berlin: Springer Berlin Heidelberg.
Seshadri, A. (2006). Multi-objective optimization using evolutionary algorithms (MOEA). Matlab Website: Http://www. Mathworks. com/matlabcentral/fileexchange/10429, by, 19.
Shahparvari, S., Chiniforooshan, P., & Abareshi, A. (2013). Designing an Integrated Multi-objective Supply Chain Network Considering Volume Flexibility. In Proceedings of the World Congress on Engineering and Computer Science (Vol. 2). San Francisco.
Simon, D. (2008). Biogeography-based optimization. Evolutionary Computation, IEEE Transactions on, 12(6), 702–13.
Srinivas, N., & Deb, K. (1994). Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3), 221–248.
Sun, R. S. R., Wang, X. W. X., & Zhao, G. Z. G. (2008). An Ant Colony Optimization Approach to Multi-Objective Supply Chain Model. In Second International Conference on Secure System Integration and Reliability Improvement (pp. 193–194). doi:10.1109/SSIRI.2008.35
Thomas, D. J., & Griffin, P. M. (1996). Coordinated supply chain management. European Journal of Operational Research, 94, 1–15. European Journal of Operational Research, 94, 1–15.
Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193–214. doi:10.1016/j.fss.2007.08.010
Tsai, W. ., & Hung, S.-J. (2009). A fuzzy goal programming approach for green supply chain optimisation under activity-based costing and performance evaluation with a value-chain structure. International Journal of Production Research, 47(18), 4991–5017.
vahdani, B., & Mohamadi, M. (2015). A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system. International Journal of Production Economics. doi:10.1016/j.ijpe.2015.08.020
Validi, S., Bhattacharya, A., & Byrne, P. J. (2014). A case analysis of a sustainable food supply chain distribution system — A multi-objective approach. International Journal of Production Economics, 1–17. doi:10.1016/j.ijpe.2014.02.003
Van Veldhuizen, D. A., & Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation, 8(2), 125–147.
Wang, F., Lai, X., & Shi, N. (2011). A multi-objective optimization for green supply chain network design. Decision Support Systems, 51(2), 262–269. doi:10.1016/j.dss.2010.11.020
Weber, C., & Current, J. (1993). A multi-objective approach to vendor selection. European Journal of Operational Research, 68, 173–184.
Wei, P., & Xu, J. (2011). The optimum order strategy from multiple suppliers with alternative quantity discounts. World Journal of Modelling and Simulation, 7(3), 218–229.
Xu, J., Liu, Q., & Wang, R. (2008). A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor. Information Sciences, 178(8), 2022–2043. doi:10.1016/j.ins.2007.11.025
Yahia, W. Ben, Cheikhrouhou, N., Ayadi, O., & Masmoudi, F. (2013). A Multi-objective Optimization for Multi-period Planning in Multi-item Cooperative. In M. Haddar et al. (Eds.): Design and Modeling of Mechanical Systems, LNME (pp. 635–643). doi:10.1007/978-3-642-37143-1
Yang, G.-Q., Liu, Y.-K., & Yang, K. (2015). Multi-objective biogeography-based optimization for supply chain network design under uncertainty. Computers & Industrial Engineering. doi:http://dx.doi.org/ 10.1016/j.cie.2015.03.008
Yeh, W.-C., & Chuang, M.-C. (2011). Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert Systems with Applications, 38(4), 4244–4253. doi:10.1016/j.eswa.2010.09.091
You, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal Design of Sustainable Cellulosic Biofuel Supply Chains?: Multiobjective Optimization Coupled with Life Cycle Assessment and Input – Output Analysis. AIChE Journal, 58(4), 1157–1180. doi:10.1002/aic
Yuce, B., Mastrocinque, E., Lambiase, A., Packianather, M. S., & Pham, D. T. (2014). A multi-objective supply chain optimisation using enhanced Bees Algorithm with adaptive neighbourhood search and site abandonment strategy. Swarm and Evolutionary Computation, 18, 71–82. doi:10.1016/j.swevo.2014.04.002
Zarandi, M. H. F., Sisakht, A. H., & Davari, S. (2011). Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming. The International Journal of Advanced Manufacturing Technology, 56(5-8), 809–821.
Zhang, A., Luo, H., & Huang, G. Q. (2013). A bi-objective model for supply chain design of dispersed manufacturing in China. Internastional Journal of Production Economics, 146(1), 48–58. doi:10.1016/j.ijpe.2012.12.008
Zhang, Z., & Xu, J. (2014). Applying nonlinear MODM model to supply chain management with quantity discount policy under complex fuzzy environment. Journal of Industrial Engineering and Management, 7(3), 660–680.
Zhao, F., Tang, J., & Yang, Y. (2012). A new Approach based on Ant Colony Optimization ( ACO ) to Determine the Supply Chain ( SC ) Design for a Product Mix. Computer, 7(3), 736–743. doi:10.4304/jcp.7.3.736-742
Zhao, F., Tang, J., & Yang, Y. (2012). A new Approach based on Ant Colony Optimization (ACO) to Determine the Supply Chain (SC) Design for a Product Mix. Journal of Computers, 7(3), 736–743. doi:10.4304/jcp.7.3.736-742
Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32–49. doi:10.1016/j.swevo.2011.03.001
Zitzler, E., Laumanns, M., Thiele, L., Zitzler, E., Zitzler, E., Thiele, L., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Eidgen{?}ssische Technische Hochschule Z{ü}rich (ETH), Institut f{ü}r Technische Informatik und Kommunikationsnetze (TIK).
Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Evolutionary Computation, IEEE Transactions on, 3(4), 257–271.