How to cite this paper
Jasiński, R. (2012). Exploration of regiospecificity phenomenon in [2+3] cycloaddition reactions between arylnitrones and trans-substituted nitroethenes on the basis of the reactivity indices theory.Current Chemistry Letters, 1(4), 157-162.
Refrences
Bara?ski A., Jasi?ski R. (2002) [2+3] Cycloaddition reactions of conjugated nitroalkenes to nitrones. Wiad. Chem., 56, 829-854.
Bara?ski A., Jasi?ski R., Cholewka E. (2011) Krzemo i nitroolefiny w reakcjach [4+2]-?-elektronowych cykloaddycji, in. Kowalski Z. (Ed.) Post?py w in?ynierii i technologii chemicznej, Cracov University of Technology, Cracow, 7-23.
Yakura T., Nakazawa M., Takino T., Ikeda M. (1992) Stereochemistry of 1,3-Dipolar Cycloadditions of Nitrones with E-1- Alkyl-2-nitroethenes. Chem. Pharm. Bull., 40, 2014-2018.
Jasi?ski R., Bara?ski A. (2006) Mechanistic aspects on the [2+3] cycloaddition of Z-C,N-diphenylnitrone with trans-1-nitropropene-1 and trans-3,3,3-trichloro-1-nitropropene-1. Polish J. Chem., 80, 1493-1502.
Jasi?ski R., Kwiatkowska M., Bara?ski A. (2006) Unexpected results of 3-nitropropene-1 [2+3] cycloaddition to C,C,N-triphenylnitrone. Chem. Heterocyclic Cmpd., 42, 1334-1337.
Jasi?ski R. (2004) PhD Thesis, Cracow University of Technology.
Padwa A., Fisera L., Koehler K.F., Rodriquez A., Wong G.S.K. (1984) Regioselectivity associated with the 1,3-dipolar cycloaddition of nitrones with electron-deficient dipolarophiles. J. Org. Chem., 49, 276-281.
Pérez, P.; Domingo, L.R.; Aizman, A.; Contreras, R. (2007) The Electrophilicity Index in Organic Chemistry, in Toro-Labbe, A. (Ed.) Theoretical Aspects of Chemical Reactivity; Elsevier, Amsterdam, Vol. 19, 139-201 and references cited therein.
Chattaraj, P. K.; Giri. G.; Duley S. (2011) Update 2 of: Electrophilicity Index. Chem. Rev., 111, PR43-PR75 and references cited therein.
Parr R. G., Yang W. (1989) Density Functional Theory of Atoms and Molecules, Oxford University, New York.
Perez P., Domingo L.R., Aurell M.J, Contreras R. (2003) Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron, 59, 3117-3125.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T. Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, Y.; Honda, O.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, M. C.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I., Martin, R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. (2009) Gaussian 09. Gaussian, Inc., Wallingford CT and references cited therein.
Perez P., Domingo L.R., Duque-Norena M., Chamorro E. (2009) A condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions. J. Mol. Struct. (TheoChem), 895, 86-91.
Aizman A., Contreras R. (2004) Back to basics: modern reactivity concepts within the HMO theory framework. J. Chil. Chem. Soc., 49, 107-111.
Bara?ski A., Jasi?ski R., Cholewka E. (2011) Krzemo i nitroolefiny w reakcjach [4+2]-?-elektronowych cykloaddycji, in. Kowalski Z. (Ed.) Post?py w in?ynierii i technologii chemicznej, Cracov University of Technology, Cracow, 7-23.
Yakura T., Nakazawa M., Takino T., Ikeda M. (1992) Stereochemistry of 1,3-Dipolar Cycloadditions of Nitrones with E-1- Alkyl-2-nitroethenes. Chem. Pharm. Bull., 40, 2014-2018.
Jasi?ski R., Bara?ski A. (2006) Mechanistic aspects on the [2+3] cycloaddition of Z-C,N-diphenylnitrone with trans-1-nitropropene-1 and trans-3,3,3-trichloro-1-nitropropene-1. Polish J. Chem., 80, 1493-1502.
Jasi?ski R., Kwiatkowska M., Bara?ski A. (2006) Unexpected results of 3-nitropropene-1 [2+3] cycloaddition to C,C,N-triphenylnitrone. Chem. Heterocyclic Cmpd., 42, 1334-1337.
Jasi?ski R. (2004) PhD Thesis, Cracow University of Technology.
Padwa A., Fisera L., Koehler K.F., Rodriquez A., Wong G.S.K. (1984) Regioselectivity associated with the 1,3-dipolar cycloaddition of nitrones with electron-deficient dipolarophiles. J. Org. Chem., 49, 276-281.
Pérez, P.; Domingo, L.R.; Aizman, A.; Contreras, R. (2007) The Electrophilicity Index in Organic Chemistry, in Toro-Labbe, A. (Ed.) Theoretical Aspects of Chemical Reactivity; Elsevier, Amsterdam, Vol. 19, 139-201 and references cited therein.
Chattaraj, P. K.; Giri. G.; Duley S. (2011) Update 2 of: Electrophilicity Index. Chem. Rev., 111, PR43-PR75 and references cited therein.
Parr R. G., Yang W. (1989) Density Functional Theory of Atoms and Molecules, Oxford University, New York.
Perez P., Domingo L.R., Aurell M.J, Contreras R. (2003) Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron, 59, 3117-3125.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T. Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, Y.; Honda, O.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, M. C.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I., Martin, R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. (2009) Gaussian 09. Gaussian, Inc., Wallingford CT and references cited therein.
Perez P., Domingo L.R., Duque-Norena M., Chamorro E. (2009) A condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions. J. Mol. Struct. (TheoChem), 895, 86-91.
Aizman A., Contreras R. (2004) Back to basics: modern reactivity concepts within the HMO theory framework. J. Chil. Chem. Soc., 49, 107-111.