How to cite this paper
Barhoumi, A., Ourhriss, N., Belghiti, M., Chafi, M., Syed, A., Eswaramoorthy, R., Verma, M., Zeroual, A., Zawadzińska, K & Jasiński, R. (2023). 3-Difluormethyl-5-carbomethoxy-2,4-pyrazole: Molecular mechanism of the formation and molecular docking study.Current Chemistry Letters, 12(3), 477-488.
Refrences
1 Khan M.F., Alam M.M., Verma G., Akhtar W., Akhter M., and Shaquiquzzaman M. (2016) The therapeutic voyage of pyrazole and its analogs: A review. Eur. J. Med. Chem., 120, 170–201.
2 Heller S.T., and Natarajan S.R. (2006) 1,3-Diketones from acid chlorides and ketones: A rapid and general one-pot synthesis of pyra-zoles. Org. Lett., 8, 2675–2678.
3 Kula K., Łapczuk, A., Sadowski M., Kras J., Zawadzińska K., Demchuk O. M., Gaurav G.K., Wróblewska A. and Jasiński, R. (2022) On the Question of the Formation of Nitro-Functionalized 2, 4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3, 3, 3-Trichloro-1-Nitroprop-1-Ene. Molecules, 27(23), 8409.
4 Keter F. K., and Darkwa J. (2012) Perspective: The potential of pyrazole-based compounds in medicine. Biometals, 25, 9–21.
5 Karrouchi K., Radi S., Ramli Y., Taoufik J., Mabkhot Y.N., Al-Aizari F.A., and Ansar M. (2018) Synthesis and pharmacological ac-tivities of pyrazole derivatives: A Review. Molecules, 23, 134.
6 Faria J.V., Vegi P.F., Miguita A.G.C., Santos M.S.D., Boechat N., and Bernardino A.M.R. (2017) Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 25, 5891–5903.
7 Bouabdallah I., Touzani R., Zidane I., and Ramdani A. (2007) Effect of two isomeric tetrapyrazolyl ligands on the catalytic oxidation of 3,5-di-tert-butylcatechol. JICS, 4, 299–303.
8 Bennani F.E., Doudach L., Cherrah Y., Ramli Y., Karrouchi K., and Faouzi, M.E.A. (2020) Overview of recent developments of pyra-zole derivatives as an anticancer agent in different cell line. Bioorg. Chem., 97, 103470.
9 Pham E.C., Le Thi T.V., Phan L.T., Nguyen H.G.T., Le K.N., and Truong, T.N. (2022) Design, synthesis, antimicrobial evaluations and in silico studies of novel pyrazol-5 (4H)-one and 1H-pyrazol-5-ol derivatives. Arab. J. Chem., 15, 103682.
10 Ningaiah S., Bhadraiah U. K., Sobha A., and Shridevi D. (2022) Synthesis of novel pyrazolyl-1, 3, 4-thiadiazole analogues. Polycycl. Aromat. Compd., 42, 4, 1249-1259.
11 Katiyar S., Kumar A., and Sashidhara K. V. (2022) Silver-catalyzed decarboxylative cyclization for the synthesis of substituted pyra-zoles from 1, 2-diaza-1, 3-dienes and α-keto acids. Chem. Comm., 58, 52, 7297-7300.
12 Jing H., Yali L., Yijiao F., Xuezhen L. Ping L. and Bin D. (2022) Cs2CO3-Promoted [3 + 2] Cyclization of Chalcone and N-Tosylhydrazone, Polycyc. Aromat. Compd., 1.
13 Ahmed W., Yan X., Hu D., Adnan M., Tang R.Y., and Cui Z.N. (2019) Synthesis and fungicidal activity of novel pyrazole deriva-tives containing 5-Phenyl-2-Furan. Bioorg. Med. Chem., 27, 115048.
14 Titi A., Touzani R., Moliterni A., Ben Hadda T., Messal, M., Benabbes R., Berredjem M., Bouzina A., Al-Zaqri N., and Taleb, M. (2022) Synthesis, Structural, Biocomputational Modeling and Antifungal Activity of Novel Armed pyrazoles. J. Mol. Struct., 1264, 133156.
15 Rahimizadeh M., Pordel M., Bakavoli M., Rezaeian S., and Sadeghian A. (2010) Synthesis and antibacterial activity of some new derivatives of pyrazole. World J. Microbiol. Biotechnol., 26, 317–321.
16 Sun J., and Zhou Y. (2015) Synthesis and Antifungal Activity of the Derivatives of Novel Pyrazole Carboxamide and Isoxazolol Pyra-zole Carboxylate. Molecules, 20, 4383–4394.
17 Balbi A., Anzaldi M., Macciò C., Aiello C., Mazzei M., Gangemi R., Castagnola P., Miele M., Rosano C., and Viale M. (2011) Syn-thesis and biological evaluation of novel pyrazole derivatives with anticancer activity. Eur. J. Med. Chem., 46, 5293–5309.
18 Abdel-Aziz M., Abuo-Rahman G.E.A., and Hassan A.A. (2009) Synthesis of novel pyrazole derivatives and evaluation of their anti-depressant and anticonvulsant activities. Eur. J. Med. Chem., 44, 3480.
19 El-Moghazy S., Barsoum F., Abdel-Rahman H., and Marzouk A. (2012) Synthesis and anti-inflammatory activity of some pyrazole derivatives. Med. Chem. Res., 21, 1722–1733.
20 Pandit U., and Dodiya A. (2013) Synthesis and antitubercular activity of novel pyrazole–quinazolinone hybrid analogs. Med. Chem. Res., 22, 3364–3371.
21 De Oliveira D.H., Sousa F.S.S., Birmann P.T., Pesarico A.P., Alves D., Jacob R.G., and Savegnago L. (2020) Evaluation of antioxi-dant activity and toxicity of sulfur- or selenium-containing 4-(arylchalcogenyl)-1H-pyrazoles. Can. J. Physiol. Pharma-col., 98, 441–448.
22 Ouyang G., Chen Z., Cai X.-J., Song B.-A., Bhadury P.S., Yang S., Jin L.-H., Xue W., Hu D.-Y., and Zeng S. (2008) Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Bioorg. Med. Chem., 16, 9699–9707.
23 Kula K., Dobosz J., Jasiński R., Kącka-Zych A., Łapczuk-Krygier A., Mirosław B., and Demchuk O.M. (2020) [3+2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct., 1203, 127473.
24 Jasiński, R. (2022). Stepwise, zwitterionic course of hetero-Diels–Alder reaction between 1, 2, 4-triazine molecular systems and 2-cyclopropylidene-1, 3-dimethylimidazoline. Chemistry of Heterocyclic Compounds, 58(4-5), 260-262.
25 Fryźlewicz A., Kącka-Zych A., Demchuk O.M., Mirosław B., Woliński P., and Jasiński R. (2021) Green synthesis of nitrocyclopro-pane-type precursors of inhibitors for the maturation of fruits and vegetables via domino reactions of diazoalkanes with 2-nitroprop-1-ene. J. Clean. Prod., 292, 126079.
26 Allaka B. S., Basavoju S., and Gamidi R. K. (2022) Transition Metal‐and Oxidant‐Free Regioselective Synthesis of 3, 4, 5‐Trisubstituted Pyrazoles by Means of [3+2] Cycloaddition Reactions. ChemistrySelect, 7, 11, e202200605.
27 Kula K., Kącka-Zych A., Łapczuk-Krygier A., Wzorek Z., Nowak A., and Jasiński R. (2021) Experimental and theoretical mechanis-tic study on the thermal decomposition of 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline. Molecules, 26, 1364.
28 Zhao P., Li Z., He J., Liu X., and Feng X. (2021) Asymmetric catalytic 1, 3-dipolar cycloaddition of α-diazoesters for synthesis of 1-pyrazoline-based spirochromanones and beyond. Sci. China Chem., 64, 8, 1355-1360.
29 Kącka‐Zych, A., and Jasiński, R. (2022). Mechanistic aspects of the synthesis of seven‐membered internal nitronates via stepwise [4+3] cycloaddition involving conjugated nitroalkenes: Molecular Electron Density Theory computational study. Journal of Computational Chemistry, 43(18), 1221-1228.
30 Katiyar S., Kumar A., and Sashidhara K. V. (2022) Silver-catalyzed decarboxylative cyclization for the synthesis of substituted pyra-zoles from 1, 2-diaza-1, 3-dienes and α-keto acids. Chem. Commun., 58, 7297-7300.
31 Bekhit A.A., Hymete A., Bekhit A.E.A., Damtew A., and Aboul-Enein H.Y. (2012) Pyrazoles as Promising Scaffold for the Synthesis of Anti-Inflammatory and/or Antimicrobial Agent: A Review. Mini Rev. Med. Chem., 10, 1014–1033.
32 Domingo, L. R. (2016) Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules, 21(10), 1319.
33 Ríos‐Gutiérrez M., and Domingo, L. R. (2019) Unravelling the mysteries of the [3+ 2] cycloaddition reactions. Eur. J. Org. Chem., 2019(2-3), 267-282.
34 Zeroual A., Ríos-Gutiérrez M., Salah M., El Alaoui El Abdallaoui H. and Domingo, L.R. (2019) An investigation of the molecular mechanism, chemoselectivity and regioselectivity of cycloaddition reaction between acetonitrile N-Oxide and 2,5-dimethyl-2H-[1,2,3]diazaphosphole: A MEDT study. J. Chem. Sci., 131, 75.
35 Kącka-Zych A., and Jasiński R. (2021) Understanding the molecular mechanism of the stereoselective conversion of N-trialkylsilyloxy nitronates into bicyclic isoxazoline derivatives. New J. Chem., 45(21), 9491-9500.
36 El Ghozlani M., Barhoumi A., Elkacmi R., Ouled Aitouna A., Zeroual A., and El Idrissi M. (2020) Mechanistic study of hetero-Diels–Alder [4+2] cycloaddition reactions between 2-nitro-1H-pyrrole and isoprene. Chemistry Africa, 3, 901-909.
37 Kula K., Kącka-Zych A., Łapczuk-Krygier A., and Jasiński R. (2021) Analysis of the possibility and molecular mechanism of carbon dioxide consumption in the Diels-Alder processes. Pure Appl. Chem., 93, 427–446.
38 Zeroual A., Ríos-Gutiérrez M., Amiri O., El Idrissi M., and Domingo, L. R. (2019) A molecular electron density theory study of the mechanism, chemo-and stereoselectivity of the epoxidation reaction of R-carvone with peracetic acid. RSC Adv., 9, 28500-28509.
39 Zahnoune R., Asserne F., Ourhriss N., Aitouna A. O., Barhoumi A., Hakmaoui Y., Belghiti M.E., Abouricha S., El aj-laoui R., and Zeroual A. (2022) Theoretical survey of Diels-Alder between acrylic acid and isoprene catalyzed by the titanium tetra-chloride and titanium tertafluoride. J. Mol. Struct., 1269, 133630.
40 Zeroual A. (2021) Theoretical investigation of the mechanism, chemo-and stereospecifity in the epoxidation reaction of limonene with meta-chloroperoxybenzoic acid (m-CPBA). Mor. J. Chem., 9, 75-84.
41 Aitouna A. O., Belghiti M. E., Eşme A., Aitouna A. O., Salah M., Chekroun A., El Alaoui El Abdallaoui H., Benharref A., Mazoir N., Zeroual A., and Nejjari C. (2021) Divulging the regioselectivity of epoxides in the ring-opening reaction, and potential himachalene derivatives predicted to target the antibacterial activities and SARS-CoV-2 spike protein with docking study. J. Mol. Struct., 1244, 130864.
42 Kącka-Zych A., and Jasiński R. (2019) Unexpected molecular mechanism of trimethylsilyl bromide elimination from 2-(trimethylsilyloxy)-3-bromo-3-methyl-isoxazolidines. Theor. Chem. Acc., 138, 81.
43 Kącka A., and Jasiński R. (2017) A dramatic change of kinetic conditions and molecular mechanism of decomposition processes of ni-troalkyl carboxylates catalyzed by ethylammonium cations. Comput. Theor. Chem., 1104, 37-42.
44 Kącka‐Zych A., and Jasiński R. (2021) Understanding the molecular mechanism of γ‐elimination of nitrous acid in the framework of the molecular electron density theory. J. Comput. Chem., 42(17), 1195-1203.
45 Jasiński R. (2018) β-Trifluoromethylated nitroethenes in Diels-Alder reaction with cyclopentadiene: A DFT computational study. J. Fluor. Chem., 206, 1-7.
46 Mykhailiuk, P. K. (2015) In Situ Generation of Difluoromethyl Diazomethane for [3+2] Cycloadditions with Alkynes. Angewandte Chemie International Edition, 54(22), 6558–6561.
47 Jasiński, R. (2016) A reexamination of the molecular mechanism of the Diels–Alder reaction between tetrafluoroethene and cyclopentadiene. React. Kinet. Mech. Catal., 119, 49-57.
48 Jasiński R. (2020) A new insight on the molecular mechanism of the reaction between (Z)-C,N-diphenylnitrone and 1,2-bismethylene-3,3,4,4,5,5-hexamethylcyclopentane. J. Mol. Graph. Model., 94, 107461.
49 Woliński P., Kącka-Zych A., Demchuk O.M., Łapczuk-Krygier A., Mirosław B., and Jasiński R. (2020) Clean and molecularly pro-grammable protocol for preparation of bis-heterobiarylic systems via a domino pseudocyclic reaction as a valuable alternative for TM-catalyzed cross-couplings. J. Clean. Prod., 275, 122086.
50 Kula K., and Łapczuk-Krygier A. (2018) A DFT computational study on the [3+2] cycloaddition between parent thionitrone and ni-troethene. Curr. Chem. Lett., 7, 27–34.
51 Jasiński R. (2018) Competition between one-step and two-step mechanism in polar [3+2] cycloadditions of (Z)-C-(3,4,5-trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-bromo-1-nitroethenes. Comput. Theor. Chem., 1125, 77–85.
52 Jasiński R. (2015) In the searching for zwitterionic intermediates on reaction paths of 32CAreactions between 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide and polymerizable olefins. RSC Adv., 5, 101045–101048.
53 Jasiński R. (2015) A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett., 56, 532–535.
54 Jasiński R. (2015) Nitroacetylene as dipolarophile in [2+3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatshefte für Chemie, 146, 591–599.
55 McLean A.D. (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys., 72, 5639–5648.
56 Krishnan R.B.J.S., Binkley J.S., Seeger R., and Pople J.A. (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys., 72, 650–654.
57 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T. J., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima Y., Honda O., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas M. C., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., and Pople J. A. (2009) Gaussian 09 rev A.1 Gaussian Inc. Wallingford CT, USA.
58 Schlegel H.B. (1982) Optimization of equilibrium geometries and transition structures. J. Comput. Chem., 3, 214–218.
59 Schlegel H.B. (1994) Modern Electronic Structure Theory. Yarkony, D.R., Ed.; World Scientific Publishing: Singapore.
60Tomasi J., and Persico M. (1994) Molecular interactions in solution: And overview of methods based on continuous distributions of the solvent. Chem. Rev., 94, 2027–2094.
61 Cossi M., Barone V., Cammi R., and Tomasi J. (1996) Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chem. Phys. Lett., 255, 327–335.
62 Cances E., Mennucci B., and Tomasi J. (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys., 107, 3032–3041.
63 Barone V., Cossi M., and Tomasi J. (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comput. Chem, 19, 404–417.
64 Parr R.G., and Yang W. (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press: New York, USA.
65 Domingo L.R., Chamorro E., and Pérez P. (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reac-tions. A theoretical study. J. Org. Chem., 73, 4615–4624.
66 Domingo L.R., Perez P., and Sáez J.A. (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv., 3, 1486–1494.
67 Zeroual A., Zoubir M., Hammal R., Benharref A., and El Hajbi A. (2015) Understanding the regioselectivity and reactivity of Friedel–Crafts benzoylation using Parr functions. Mor. J. Chem, 3, 356-360.
68 Becke A.D., and Edgecombe K.E. (1990) A simple measure of electron localization n atomic and molecular-systems. J. Chem. Phys., 92, 5397–5403.
69 Noury S., Krokidis X., Fuster F., and Silvi B. (1999) Computational tools for the electron localization function topological analy-sis. Comput. Chem., 23, 597–604.
70 Domingo L. R., and Ríos-Gutiérrez M. A (2023) Useful Classification of Organic Reactions Based on the Flux of the Electron Density. Scientiae Radices, 2, 1-24.
71 Jasiński, R. (2015) A stepwise, zwitterionic mechanism for the 1, 3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett., 56(3), 532-535.
72 Jasiński, R. (2014) Searching for zwitterionic intermediates in Hetero Diels–Alder reactions between methyl α, p-dinitrocinnamate and vinyl-alkyl ethers. Computational and Theoretical Chemistry, 1046, 93-98.
73 Butt S.S., Badshah Y., Shabbir M., and Rafiq M. (2020) Molecular Docking Using Chimera and Autodock Vina Software for Nonbio-informaticians. JMIR Bioinform. Biotechnol., 1, e14232.