How to cite this paper
Jyothi, K., Hema, M., Kumara, K & Lokanath, N. (2023). Gallic acid-butyramide monohydrate cocrystal: Crystal growth, Structural insights, Theoretical calculations and Molecular docking studies against COVID-19 main protease.Current Chemistry Letters, 12(1), 235-248.
Refrences
1. Dhanaraj, G., Byrappa, K., Prasad, V. V., & Dudley, M. (2010). Crystal growth techniques and characterization: an overview. Springer Handbook of Crystal Growth, 3-16. https://link.springer.com/chapter/10.1007/978-3-540-74761-1_1
2. Garside, J. (1971). The concept of effectiveness factors in crystal growth. Chemical Engineering Science, 26(9), 1425-1431. https://doi.org/10.1016/0009-2509(71)80062-3
3. Brandeis, G., Jaupart, C., & Allègre, C. J. (1984). Nucleation, crystal growth and the thermal regime of cooling magmas. Journal of Geophysical Research: Solid Earth, 89(B12), 10161-10177. https://doi.org/10.1029/JB089iB12p10161
4. Myerson, A. S., & Ginde, R. (2002). Crystals, crystal growth, and nucleation. In Handbook of industrial crystallization (pp. 33-65). Butterworth-Heinemann. https://doi.org/10.1016/B978-075067012-8/50004-5
5. Sankaranarayanan, K., & Ramasamy, P. (2005). Unidirectional seeded single crystal growth from solution of benzophenone. Journal of Crystal Growth, 280(3-4), 467-473. https://doi.org/10.1016/j.jcrysgro.2005.03.075
6. Schultheiss, N., & Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. Crystal growth and design, 9(6), 2950-2967. https://doi.org/10.1021/cg900129f
7. Newman, A. W., & Byrn, S. R. (2003). Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug discovery today, 8(19), 898-905. https://doi.org/10.1016/S1359-6446(03)02832-0
8. Cheney, M. L., Weyna, D. R., Shan, N., Hanna, M., Wojtas, L., & Zaworotko, M. J. (2011). Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. Journal of pharmaceutical sciences, 100(6), 2172-2181. https://doi.org/10.1002/jps.22434
9. Kumar, S. (2018). Pharmaceutical cocrystals: an overview. Indian Journal of Pharmaceutical Sciences, 79(6), 858-871.
10. Jyothi, K. L., Kumara, K., Hema, M. K., Gautam, R., Row, T. G., & Lokanath, N. K. (2020). Structural elucidation, theoretical insights and thermal properties of three novel multicomponent molecular forms of gallic acid with hydroxypyridines. Journal of Molecular Structure, 1207, 127828. https://doi.org/10.1016/j.molstruc.2020.127828
11. Ganduri, R., Cherukuvada, S., & Guru Row, T. N. (2015). Multicomponent adducts of pyridoxine: an evaluation of the formation of eutectics and molecular salts. Crystal Growth & Design, 15(7), 3474-3480. https://doi.org/10.1021/acs.cgd.5b00546
12. Newman, A. W., & Byrn, S. R. (2003). Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug discovery today, 8(19), 898-905. https://doi.org/10.1016/S1359-6446(03)02832-0
13. Nayeem, N., Asdaq, S. M. B., Salem, H., & AHEl-Alfqy, S. (2016). Gallic acid: a promising lead molecule for drug development. Journal of Applied Pharmacy, 8(2), 1-4. https://doi.org/10.4172/1920-4159.1000213
14. Chen, H. M., Wu, Y. C., Chia, Y. C., Chang, F. R., Hsu, H. K., Hsieh, Y. C., ... & Yuan, S. S. (2009). Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer letters, 286(2), 161-171. https://doi.org/10.1016/j.canlet.2009.05.040
15. Borges, A., Saavedra, M. J., & Simões, M. (2012). The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 28(7), 755-767. https://doi.org/10.1080/08927014.2012.706751
16. Seo, D. J., Lee, H. B., Kim, I. S., Kim, K. Y., Park, R. D., & Jung, W. J. (2013). Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microbial pathogenesis, 56, 8-15. https://doi.org/10.1016/j.micpath.2013.01.001
17. Kratz, J. M., Andrighetti-Fröhner, C. R., Leal, P. C., Nunes, R. J., Yunes, R. A., Trybala, E., ... & Simões, C. M. O. (2008). Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. Biological and Pharmaceutical Bulletin, 31(5), 903-907. https://doi.org/10.1248/bpb.31.903
18. Kroes, B. V., Van den Berg, A. J. J., Van Ufford, H. Q., Van Dijk, H., & Labadie, R. P. (1992). Anti-inflammatory activity of gallic acid. Planta medica, 58(06), 499-504. https://doi.org/10.1055/s-2006-961535
19. Jyothi, K. L., Gautam, R., Swain, D., Guru Row, T. N., & Lokanath, N. K. (2019). Cocrystals of gallic acid with urea and propionamide: supramolecular structures, Hirshfeld surface analysis, and DFT studies. Crystal Research and Technology, 54(8), 1900016. https://doi.org/10.1002/crat.201900016
20. Chadha, R., Saini, A., Khullar, S., Jain, D. S., Mandal, S. K., & Guru Row, T. N. (2013). Crystal structures and physicochemical properties of four new lamotrigine multicomponent forms. Crystal growth & design, 13(2), 858-870. https://doi.org/10.1021/cg301556j
21. Lama, A., Annunziata, C., Coretti, L., Pirozzi, C., Di Guida, F., Izzo, A. N., ... & Raso, G. M. (2019). N-(1-carbamoyl-2-phenylethyl) butyramide reduces antibiotic-induced intestinal injury, innate immune activation and modulates microbiota composition. Scientific reports, 9(1), 1-12. https://www.nature.com/articles/s41598-019-41295-x
22. Kamal, A., Tamboli, J. R., Ramaiah, M. J., Adil, S. F., Koteswara Rao, G., Viswanath, A., ... & Pal‐Bhadra, M. (2012). Anthranilamide–Pyrazolo [1, 5‐a] pyrimidine Conjugates as p53 Activators in Cervical Cancer Cells. ChemMedChem, 7(8), 1453-1464. https://doi.org/10.1002/cmdc.201200205
23. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D., & Spackman, M. A. (2012). CrystalExplorer (Version 3.1). University of Western Australia. http://crystalexplorer.scb.uwa.edu.au/
24. Kamat, V., Kumara, K., Naik, K., Kotian, A., Netalkar, P., Shivalingegowda, N., ... & Revankar, V. (2017). [Dichlorido (2-(2-(1H-benzo [d] thiazol-2-yl) hydrazono) propan-1-ol) Cu (II)]: Crystal structure, Hirshfeld surface analysis and correlation of its ESI-MS behavior with [Dichlorido 3-(hydroxyimino)-2-butanone-2-(1H-benzo [d] thiazol-2-yl) hydrazone Cu (II)]. Journal of Molecular Structure, 1149, 357-366. https://doi.org/10.1016/j.molstruc.2017.07.109
25. Seth, S. K. (2013). Tuning the formation of MOFs by pH influence: X-ray structural variations and Hirshfeld surface analyses of 2-amino-5-nitropyridine with cadmium chloride. Cryst Eng Comm, 15(9), 1772-1781. https://doi.org/10.1039/C2CE26682B
26. Seth, S. K. (2014) J. Mol. Stru. 1064, 70-75.
27. McKinnon, J. J., Jayatilaka, D., & Spackman, M. A. (2007). Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications, (37), 3814-3816. https://doi.org/10.1039/B704980C
28. Kamat, V., Kumara, K., Shaikh, S., Shivalingegowda, N., Lokanath, N. K., & Revankar, V. (2018). Crystal structure and Hirshfeld surface analysis of bis (2-(2-(1H-benzo [d] imidazol-2-yl) hydrazono) propan-1-ol) nickel (II) chloride. Chemical Data Collections, 17, 251-262. https://doi.org/10.1016/j.cdc.2018.09.004
29. M. W. Shi, S. P. Thomas, G. A. Koutsantonis and M. A. Spackman, Cryst. Growth Des, 15 (12) (2015) 5892-5900.
30. Mohamooda Sumaya, U., KarunaKaran, J., Biruntha, K., MohanaKrishnan, A. K., & Usha, G. (2018). Crystal structure and Hirshfeld surface analysis and energy frameworks of 1-(2, 4-dimethylphenyl)-4-(4-methoxyphenyl) naphthalene. Acta Crystallographica Section E: Crystallographic Communications, 74(7), 939-943. https://doi.org/10.1107/S2056989018008332
31. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D., & Spackman, M. A. (2017). CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 4(5), 575-587. https://doi.org/10.1107/S205225251700848X
32. Kumara, K., Al-Ostoot, F. H., Mohammed, Y. H. E., Khanum, S. A., & Lokanath, N. K. (2019). Synthesis, crystal structure and 3D energy frameworks of ethyl 2-[5-nitro-2-oxopyridine-1 (2H)-yl] acetate: Hirshfeld surface analysis and DFT calculations. Chemical Data Collections, 20, 100195. https://doi.org/10.1016/j.cdc.2019.100195 .
33. Raveesha, T. C., Hema, M. K., Pampa, K. J., Chandrashekara, P. G., Mantelingu, K., Demappa, T., & Lokanath, N. K. (2021). Analysis of supramolecular self-assembly of two chromene derivatives: Synthesis, crystal structure, Hirshfeld surface, quantum computational and molecular docking studies. Journal of Molecular Structure, 1225, 129104. https://doi.org/10.1016/j.molstruc.2020.129104
34. Trask, A. V., & Jones, W. (2005). Crystal engineering of organic cocrystals by the solid-state grinding approach. Organic solid state reactions, 41-70. https://doi.org/10.1007/b100995
35. Karki, S., Friščić, T., Jones, W., & Motherwell, W. S. (2007). Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Molecular pharmaceutics, 4(3), 347-354. https://doi.org/10.1007/b100995
36. Hasa, D., Schneider Rauber, G., Voinovich, D., & Jones, W. (2015). Cocrystal Formation through Mechanochemistry: from Neat and Liquid‐Assisted Grinding to Polymer‐Assisted Grinding. Angewandte Chemie, 127(25), 7479-7483. https://doi.org/10.1002/ange.201501638
37. Schultheiss, N., & Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. Crystal growth and design, 9(6), 2950-2967. https://doi.org/10.1021/cg900129f
38. Weyna, D. R., Shattock, T., Vishweshwar, P., & Zaworotko, M. J. (2009). Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Crystal Growth and Design, 9(2), 1106-1123. https://doi.org/10.1021/cg800936d
39. Newman, A. W., & Byrn, S. R. (2003). Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug discovery today, 8(19), 898-905. https://doi.org/10.1016/S1359-6446(03)02832-0
40. Jyothi, K. L., & Lokanath, N. K. (2020). Understanding the Formation of Novel Hydrated Gallic Acid-Creatinine Molecular Salt: Crystal Structure, Hirshfeld Surface and DFT Studies. Journal of Chemical Crystallography, 50(4), 410-421. https://doi.org/10.1007/s10870-019-00814-4
41. Bruker, S. P. (2009). Bruker AXS Inc., Madison, Wisconsin, USA, 1999;(b) AL Spek. Acta Crystallogr., Sect. D: Biol. Crystallogr, 65, 148-155.
42. Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71(1), 3-8. https://doi.org/10.1107/S2053229614024218 Sheldrick, G. M. (1990). Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallographica Section A: Foundations of Crystallography, 46(6), 467-473. https://doi.org/10.1107/S0108767390000277
43. Spek, A. L. (1990) PLATON, an integrated tool for the analysis of the results of a single crystal structure determination, Acta. Cryst. A. 46, 34. https://doi.org/10.1107/S0108767390099780
44. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., ... & Wood, P. A. (2008). Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41(2), 466-470. https://doi.org/10.1107/S0021889807067908
45. Sarkar, A., & Rohani, S. (2015). Cocrystals of acyclovir with promising physicochemical properties. Journal of pharmaceutical sciences, 104(1), 98-105. https://doi.org/10.1002/jps.24248
46. Seth, S. K. (2014). Structural elucidation and contribution of intermolecular interactions in O-hydroxy acyl aromatics: Insights from X-ray and Hirshfeld surface analysis. Journal of Molecular Structure, 1064, 70-75. https://doi.org/10.1016/j.molstruc.2014.01.068
47. Spackman, M. A., & McKinnon, J. J. (2002). Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66), 378-392. https://Doi.org/10.1039/B203191B
48. McKinnon, J. J., Jayatilaka, D., & Spackman, M. A. (2007). Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications, (37), 3814-3816. https://doi.org/10.1039/B704980C
49. Kumara, K., Shivalingegowda, N., Mahadevaswamy, L. D., Kariyappa, A. K., & Lokanath, N. K. (2017). Crystal structure studies and Hirshfeld surface analysis of 5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carbothioamide. Chemical Data Collections, 9, 251-262. https://doi.org/10.1016/j.cdc.2016.11.006
50. Kumara, K., Jyothi, M., Shivalingegowda, N., Khanum, S. A., & Krishnappagowda, L. N. (2017). Synthesis, characterization, crystal structure and Hirshfeld surface analysis of 1-(4-ethoxyphenyl)-3-(4-methylphenyl) prop-2en-1-one. Chemical Data Collections, 9, 152-163. https://doi.org/10.1016/j.cdc.2017.06.003
51. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Fox, D. J. (2016). Gaussian 16.
52. R. Dennington, T. Keith, J.Millam, GaussView, version 6. Semichem Inc.: Shawnee Mission, KS. (2009).
53. Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. physica, 1(1-6), 104-113.
54. Havranek, B., & Islam, S. M. (2021). An in silico approach for identification of novel inhibitors as potential therapeutics targeting COVID-19 main protease. Journal of Biomolecular Structure and Dynamics, 39(12), 4304-4315. https://doi.org/10.1080/07391102.2020.1776158
55. Bheenaveni, R. S. (2020). India’s indigenous idea of herd immunity: the solution for COVID-19?. Traditional Medicine Research, 5(4), 182. https://doi.org/10.12032/TMR20200519181
56. Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases, 20(5), 533-534. https://doi.org/10.1016/S1473-3099(20)30120-1
57. Agrahari, A. K. (2017). A computational approach to identify a potential alternative drug with its positive impact toward PMP22. Journal of Cellular Biochemistry, 118(11), 3730-3743.
58. Trott, O., and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461. https://doi.org/10.1002/jcb.26020
59. Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 10550, 92037.
60. Hema, M. K., ArunRenganathan, R. R., Nanjundaswamy, S., Karthik, C. S., Mohammed, Y. H. I., Alghamdi, S., ... & Mallu, P. (2020). N-(4-bromobenzylidene)-2, 3-dihydrobenzo [b][1, 4] dioxin-6-amine: Synthesis, crystal structure, docking and in-vitro inhibition of PLA2. Journal of Molecular Structure, 1218, 128441. https://doi.org/10.1016/j.molstruc.2020.128441
2. Garside, J. (1971). The concept of effectiveness factors in crystal growth. Chemical Engineering Science, 26(9), 1425-1431. https://doi.org/10.1016/0009-2509(71)80062-3
3. Brandeis, G., Jaupart, C., & Allègre, C. J. (1984). Nucleation, crystal growth and the thermal regime of cooling magmas. Journal of Geophysical Research: Solid Earth, 89(B12), 10161-10177. https://doi.org/10.1029/JB089iB12p10161
4. Myerson, A. S., & Ginde, R. (2002). Crystals, crystal growth, and nucleation. In Handbook of industrial crystallization (pp. 33-65). Butterworth-Heinemann. https://doi.org/10.1016/B978-075067012-8/50004-5
5. Sankaranarayanan, K., & Ramasamy, P. (2005). Unidirectional seeded single crystal growth from solution of benzophenone. Journal of Crystal Growth, 280(3-4), 467-473. https://doi.org/10.1016/j.jcrysgro.2005.03.075
6. Schultheiss, N., & Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. Crystal growth and design, 9(6), 2950-2967. https://doi.org/10.1021/cg900129f
7. Newman, A. W., & Byrn, S. R. (2003). Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug discovery today, 8(19), 898-905. https://doi.org/10.1016/S1359-6446(03)02832-0
8. Cheney, M. L., Weyna, D. R., Shan, N., Hanna, M., Wojtas, L., & Zaworotko, M. J. (2011). Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. Journal of pharmaceutical sciences, 100(6), 2172-2181. https://doi.org/10.1002/jps.22434
9. Kumar, S. (2018). Pharmaceutical cocrystals: an overview. Indian Journal of Pharmaceutical Sciences, 79(6), 858-871.
10. Jyothi, K. L., Kumara, K., Hema, M. K., Gautam, R., Row, T. G., & Lokanath, N. K. (2020). Structural elucidation, theoretical insights and thermal properties of three novel multicomponent molecular forms of gallic acid with hydroxypyridines. Journal of Molecular Structure, 1207, 127828. https://doi.org/10.1016/j.molstruc.2020.127828
11. Ganduri, R., Cherukuvada, S., & Guru Row, T. N. (2015). Multicomponent adducts of pyridoxine: an evaluation of the formation of eutectics and molecular salts. Crystal Growth & Design, 15(7), 3474-3480. https://doi.org/10.1021/acs.cgd.5b00546
12. Newman, A. W., & Byrn, S. R. (2003). Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug discovery today, 8(19), 898-905. https://doi.org/10.1016/S1359-6446(03)02832-0
13. Nayeem, N., Asdaq, S. M. B., Salem, H., & AHEl-Alfqy, S. (2016). Gallic acid: a promising lead molecule for drug development. Journal of Applied Pharmacy, 8(2), 1-4. https://doi.org/10.4172/1920-4159.1000213
14. Chen, H. M., Wu, Y. C., Chia, Y. C., Chang, F. R., Hsu, H. K., Hsieh, Y. C., ... & Yuan, S. S. (2009). Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer letters, 286(2), 161-171. https://doi.org/10.1016/j.canlet.2009.05.040
15. Borges, A., Saavedra, M. J., & Simões, M. (2012). The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling, 28(7), 755-767. https://doi.org/10.1080/08927014.2012.706751
16. Seo, D. J., Lee, H. B., Kim, I. S., Kim, K. Y., Park, R. D., & Jung, W. J. (2013). Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microbial pathogenesis, 56, 8-15. https://doi.org/10.1016/j.micpath.2013.01.001
17. Kratz, J. M., Andrighetti-Fröhner, C. R., Leal, P. C., Nunes, R. J., Yunes, R. A., Trybala, E., ... & Simões, C. M. O. (2008). Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. Biological and Pharmaceutical Bulletin, 31(5), 903-907. https://doi.org/10.1248/bpb.31.903
18. Kroes, B. V., Van den Berg, A. J. J., Van Ufford, H. Q., Van Dijk, H., & Labadie, R. P. (1992). Anti-inflammatory activity of gallic acid. Planta medica, 58(06), 499-504. https://doi.org/10.1055/s-2006-961535
19. Jyothi, K. L., Gautam, R., Swain, D., Guru Row, T. N., & Lokanath, N. K. (2019). Cocrystals of gallic acid with urea and propionamide: supramolecular structures, Hirshfeld surface analysis, and DFT studies. Crystal Research and Technology, 54(8), 1900016. https://doi.org/10.1002/crat.201900016
20. Chadha, R., Saini, A., Khullar, S., Jain, D. S., Mandal, S. K., & Guru Row, T. N. (2013). Crystal structures and physicochemical properties of four new lamotrigine multicomponent forms. Crystal growth & design, 13(2), 858-870. https://doi.org/10.1021/cg301556j
21. Lama, A., Annunziata, C., Coretti, L., Pirozzi, C., Di Guida, F., Izzo, A. N., ... & Raso, G. M. (2019). N-(1-carbamoyl-2-phenylethyl) butyramide reduces antibiotic-induced intestinal injury, innate immune activation and modulates microbiota composition. Scientific reports, 9(1), 1-12. https://www.nature.com/articles/s41598-019-41295-x
22. Kamal, A., Tamboli, J. R., Ramaiah, M. J., Adil, S. F., Koteswara Rao, G., Viswanath, A., ... & Pal‐Bhadra, M. (2012). Anthranilamide–Pyrazolo [1, 5‐a] pyrimidine Conjugates as p53 Activators in Cervical Cancer Cells. ChemMedChem, 7(8), 1453-1464. https://doi.org/10.1002/cmdc.201200205
23. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D., & Spackman, M. A. (2012). CrystalExplorer (Version 3.1). University of Western Australia. http://crystalexplorer.scb.uwa.edu.au/
24. Kamat, V., Kumara, K., Naik, K., Kotian, A., Netalkar, P., Shivalingegowda, N., ... & Revankar, V. (2017). [Dichlorido (2-(2-(1H-benzo [d] thiazol-2-yl) hydrazono) propan-1-ol) Cu (II)]: Crystal structure, Hirshfeld surface analysis and correlation of its ESI-MS behavior with [Dichlorido 3-(hydroxyimino)-2-butanone-2-(1H-benzo [d] thiazol-2-yl) hydrazone Cu (II)]. Journal of Molecular Structure, 1149, 357-366. https://doi.org/10.1016/j.molstruc.2017.07.109
25. Seth, S. K. (2013). Tuning the formation of MOFs by pH influence: X-ray structural variations and Hirshfeld surface analyses of 2-amino-5-nitropyridine with cadmium chloride. Cryst Eng Comm, 15(9), 1772-1781. https://doi.org/10.1039/C2CE26682B
26. Seth, S. K. (2014) J. Mol. Stru. 1064, 70-75.
27. McKinnon, J. J., Jayatilaka, D., & Spackman, M. A. (2007). Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications, (37), 3814-3816. https://doi.org/10.1039/B704980C
28. Kamat, V., Kumara, K., Shaikh, S., Shivalingegowda, N., Lokanath, N. K., & Revankar, V. (2018). Crystal structure and Hirshfeld surface analysis of bis (2-(2-(1H-benzo [d] imidazol-2-yl) hydrazono) propan-1-ol) nickel (II) chloride. Chemical Data Collections, 17, 251-262. https://doi.org/10.1016/j.cdc.2018.09.004
29. M. W. Shi, S. P. Thomas, G. A. Koutsantonis and M. A. Spackman, Cryst. Growth Des, 15 (12) (2015) 5892-5900.
30. Mohamooda Sumaya, U., KarunaKaran, J., Biruntha, K., MohanaKrishnan, A. K., & Usha, G. (2018). Crystal structure and Hirshfeld surface analysis and energy frameworks of 1-(2, 4-dimethylphenyl)-4-(4-methoxyphenyl) naphthalene. Acta Crystallographica Section E: Crystallographic Communications, 74(7), 939-943. https://doi.org/10.1107/S2056989018008332
31. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D., & Spackman, M. A. (2017). CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 4(5), 575-587. https://doi.org/10.1107/S205225251700848X
32. Kumara, K., Al-Ostoot, F. H., Mohammed, Y. H. E., Khanum, S. A., & Lokanath, N. K. (2019). Synthesis, crystal structure and 3D energy frameworks of ethyl 2-[5-nitro-2-oxopyridine-1 (2H)-yl] acetate: Hirshfeld surface analysis and DFT calculations. Chemical Data Collections, 20, 100195. https://doi.org/10.1016/j.cdc.2019.100195 .
33. Raveesha, T. C., Hema, M. K., Pampa, K. J., Chandrashekara, P. G., Mantelingu, K., Demappa, T., & Lokanath, N. K. (2021). Analysis of supramolecular self-assembly of two chromene derivatives: Synthesis, crystal structure, Hirshfeld surface, quantum computational and molecular docking studies. Journal of Molecular Structure, 1225, 129104. https://doi.org/10.1016/j.molstruc.2020.129104
34. Trask, A. V., & Jones, W. (2005). Crystal engineering of organic cocrystals by the solid-state grinding approach. Organic solid state reactions, 41-70. https://doi.org/10.1007/b100995
35. Karki, S., Friščić, T., Jones, W., & Motherwell, W. S. (2007). Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Molecular pharmaceutics, 4(3), 347-354. https://doi.org/10.1007/b100995
36. Hasa, D., Schneider Rauber, G., Voinovich, D., & Jones, W. (2015). Cocrystal Formation through Mechanochemistry: from Neat and Liquid‐Assisted Grinding to Polymer‐Assisted Grinding. Angewandte Chemie, 127(25), 7479-7483. https://doi.org/10.1002/ange.201501638
37. Schultheiss, N., & Newman, A. (2009). Pharmaceutical cocrystals and their physicochemical properties. Crystal growth and design, 9(6), 2950-2967. https://doi.org/10.1021/cg900129f
38. Weyna, D. R., Shattock, T., Vishweshwar, P., & Zaworotko, M. J. (2009). Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Crystal Growth and Design, 9(2), 1106-1123. https://doi.org/10.1021/cg800936d
39. Newman, A. W., & Byrn, S. R. (2003). Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug discovery today, 8(19), 898-905. https://doi.org/10.1016/S1359-6446(03)02832-0
40. Jyothi, K. L., & Lokanath, N. K. (2020). Understanding the Formation of Novel Hydrated Gallic Acid-Creatinine Molecular Salt: Crystal Structure, Hirshfeld Surface and DFT Studies. Journal of Chemical Crystallography, 50(4), 410-421. https://doi.org/10.1007/s10870-019-00814-4
41. Bruker, S. P. (2009). Bruker AXS Inc., Madison, Wisconsin, USA, 1999;(b) AL Spek. Acta Crystallogr., Sect. D: Biol. Crystallogr, 65, 148-155.
42. Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71(1), 3-8. https://doi.org/10.1107/S2053229614024218 Sheldrick, G. M. (1990). Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallographica Section A: Foundations of Crystallography, 46(6), 467-473. https://doi.org/10.1107/S0108767390000277
43. Spek, A. L. (1990) PLATON, an integrated tool for the analysis of the results of a single crystal structure determination, Acta. Cryst. A. 46, 34. https://doi.org/10.1107/S0108767390099780
44. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., ... & Wood, P. A. (2008). Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41(2), 466-470. https://doi.org/10.1107/S0021889807067908
45. Sarkar, A., & Rohani, S. (2015). Cocrystals of acyclovir with promising physicochemical properties. Journal of pharmaceutical sciences, 104(1), 98-105. https://doi.org/10.1002/jps.24248
46. Seth, S. K. (2014). Structural elucidation and contribution of intermolecular interactions in O-hydroxy acyl aromatics: Insights from X-ray and Hirshfeld surface analysis. Journal of Molecular Structure, 1064, 70-75. https://doi.org/10.1016/j.molstruc.2014.01.068
47. Spackman, M. A., & McKinnon, J. J. (2002). Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66), 378-392. https://Doi.org/10.1039/B203191B
48. McKinnon, J. J., Jayatilaka, D., & Spackman, M. A. (2007). Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications, (37), 3814-3816. https://doi.org/10.1039/B704980C
49. Kumara, K., Shivalingegowda, N., Mahadevaswamy, L. D., Kariyappa, A. K., & Lokanath, N. K. (2017). Crystal structure studies and Hirshfeld surface analysis of 5-(4-methoxyphenyl)-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carbothioamide. Chemical Data Collections, 9, 251-262. https://doi.org/10.1016/j.cdc.2016.11.006
50. Kumara, K., Jyothi, M., Shivalingegowda, N., Khanum, S. A., & Krishnappagowda, L. N. (2017). Synthesis, characterization, crystal structure and Hirshfeld surface analysis of 1-(4-ethoxyphenyl)-3-(4-methylphenyl) prop-2en-1-one. Chemical Data Collections, 9, 152-163. https://doi.org/10.1016/j.cdc.2017.06.003
51. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Fox, D. J. (2016). Gaussian 16.
52. R. Dennington, T. Keith, J.Millam, GaussView, version 6. Semichem Inc.: Shawnee Mission, KS. (2009).
53. Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. physica, 1(1-6), 104-113.
54. Havranek, B., & Islam, S. M. (2021). An in silico approach for identification of novel inhibitors as potential therapeutics targeting COVID-19 main protease. Journal of Biomolecular Structure and Dynamics, 39(12), 4304-4315. https://doi.org/10.1080/07391102.2020.1776158
55. Bheenaveni, R. S. (2020). India’s indigenous idea of herd immunity: the solution for COVID-19?. Traditional Medicine Research, 5(4), 182. https://doi.org/10.12032/TMR20200519181
56. Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases, 20(5), 533-534. https://doi.org/10.1016/S1473-3099(20)30120-1
57. Agrahari, A. K. (2017). A computational approach to identify a potential alternative drug with its positive impact toward PMP22. Journal of Cellular Biochemistry, 118(11), 3730-3743.
58. Trott, O., and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461. https://doi.org/10.1002/jcb.26020
59. Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 10550, 92037.
60. Hema, M. K., ArunRenganathan, R. R., Nanjundaswamy, S., Karthik, C. S., Mohammed, Y. H. I., Alghamdi, S., ... & Mallu, P. (2020). N-(4-bromobenzylidene)-2, 3-dihydrobenzo [b][1, 4] dioxin-6-amine: Synthesis, crystal structure, docking and in-vitro inhibition of PLA2. Journal of Molecular Structure, 1218, 128441. https://doi.org/10.1016/j.molstruc.2020.128441