How to cite this paper
Czekaj, I & Sobuś, N. (2019). Cluster model DFT study of lactic acid dehydration over Fe and Sn-BEA zeolite.Current Chemistry Letters, 8(4), 187-198.
Refrences
1 Corma A., Iborra S., & Velty A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals, Chem. Rev., 107, 2411-2502.
2 Rinaldi R., & Schüth F. (2009). Design of solid catalysts for the conversion of biomass, Energy Environ. Sci., 2, 610-626.
3 Stöcker M. (2008). Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials, Angew Chem Int Ed Eng., 47, 9200-11.
4 Montejo-Valencia B. D., Salcedo-Pérez, J. L., & Curet-Arana, M. C. J. (2016). DFT Study of Closed and Open Sites of BEA, FAU, MFI, and BEC Zeolites Substituted with Tin and Titanium, J. Phys. Chem. C, 120, 2176–2186.
5 Osmundsen C. M., Holm M. S., Dahl S., & Taarning, E. (2012). Tin-containing silicates: structure–activity relations, Proc. R. Soc. London, Ser. A, 468, 2000-2016.
6 Wolf P., Valla M., Rossini A. J., Comas-Vives A., Núñez-Zarur F., Malaman B., Lesage A., Emsley L., Copéret C., & Hermans I., (2014). NMR signatures of the active sites in Sn-β zeolite, Angew Chem Int Ed Eng., 53,10179-83.
7 Corma A., Domine M. E., Nemeth L., & Valencia S. (2002). Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerwein−Ponndorf−Verley Reaction), J. Am. Chem. Soc., 124, 3194–3195.
8 Lew C. M., Rajabbeigi N., & Tsapatsis M. (2012). Tin-containing zeolite for the isomerization of cellulosic sugars, Microporous and Mesoporous Materials, 153, 55-58.
9 Yang G., Pidko E., & Hensen E. J. M. (2013). Structure, Stability, and Lewis Acidity of Mono and Double Ti, Zr, and Sn Framework Substitutions in BEA Zeolites: A Periodic Density Functional Theory Study, J. Phys. Chem. C, 117, 3976–3986.
10 Boronat M., Concepcion P., Corma A., Renz M., & Valencia S. (2005). Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J. Catal., 234, 111–118.
11 Sun Q., Gao Z.X., Chen H.Y., & Sachtler W. (2001) Reduction of NOx with Ammonia over Fe/MFI: Reaction Mechanism Based on Isotopic Labeling. Journal of Catalysis, 201, 89-99.
12 Heindrich F., Schmidt C., Loeffler E., Menzel M., & Gruenert W. (2002). Fe–ZSM-5 Catalysts for the Selective Reduction of NO by Isobutane—The Problem of the Active Sites, J. Catalysis, 212, 157-172.
13 Kröcher O., Devadas M., Elsener M., Wokaun A., Soger N., Pfeifer M., Demel Y., & Mussmann L. (2006) Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5, Appl. Catalysis B: Environmental, 67, 187-196.
14 Boroń P., Rutkowska M., Gil B., Marszałek B., Chmielarz L., & Dzwigaj S. (2019). Experimental Evidence of the Mechanism of Selective Catalytic Reduction of NO with NH3 over Fe-Containing BEA Zeolites, ChemSusChem 12, 692-705.
15 Schwidder M., Grünert W., Bentrup U., & Brückner A. (2006). Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Part II. Assessing the function of different Fe sites by spectroscopic in situ studies, J. Catalysis, 239, 173-186.
16 Heinrich F., Schmidt C., Löffler E., Menzel M., & Grünert W. (2002). Fe-ZSM-5 catalysts for the selective reduction of NO by isobutane - The problem of the active sites, J. Catalysis, 212, 157-172.
17 Rivallan M., Ricchiardi G., Bordiga S., Zecchina A. (2009). Adsorption and reactivity of nitrogen oxides (NO2, NO, N2O) on Fe–zeolites, J. Catalysis, 264, 104-116.
18 Pirutko L.V., Chernyavsky V.S., Starokon E.V., Ivanov A.A., Kharitonov A.S., & Panov G.I. (2009). The role of α-sites in N2O decomposition over FeZSM-5. Comparison with the oxidation of benzene to phenol, Applied Catalysis B: Environmental, 91, 174-179.
19 Fellah M.F., van Santen R.A., & Onal, I. (2009). Oxidation of benzene to phenol by N2O on an Fe2+-ZSM-5 cluster: A density functional theory study, J. Physical Chemistry C, 113, 15307-15313.
20 Yuranov I., Bulushev D.A., Renken A., & Kiwi-Minsker, L. (2007). Benzene to phenol hydroxylation with N2O over Fe-Beta and Fe-ZSM-5: Comparison of activity per Fe-site. Applied Catalysis A: General, 319, 128-136.
21 Ivanov D.P., Piryutko L.V., & Sobolev, V.I. (2004). Biphenyl oxidation with nitrous oxide on MFI zeolites. Petroleum Chemistry, 44, 322-327.
22 Ehrich H., Schwieger W., Jahnisch K. (2004). Investigations on the selective oxidation of benzonitrile using nitrous oxide catalyzed by modified ZSM-5 zeolites, Applied Catalysis A: General, 272, 311-319.
23 Czekaj I., Brandenberger S., & Kröcher, O. (2013) Theoretical studies of HNCO adsorption at stabilized iron complexes in the ZSM-5 framework, Microporous Mesoporous Materials, 169, 97-102.
24 Chen B., Liu N., Liu X., Zhang R., Li Y., Li Y., & Sun, X. (2011) Study on the direct decomposition of nitrous oxide over Fe-beta zeolites: From experiment to theory, Catalysis Today, 175, 245-255.
25 Dai, C., Lei, Z., Wang, Y., Zhang, R., & Chen, B. (2013). Reduction of N2O by CO over Fe- and Cu-BEA zeolites: An experimental and computational study of the mechanism, Microporous and Mesoporous Materials, 167, 254-266.
26 Battiston A.A., Bitter J.H., & Koningsberger D.C. (2003). Reactivity of binuclear Fe complexes in over-exchanged Fe/ZSM5, studied by in situ XAFS spectroscopy 2. Selective catalytic reduction of NO with isobutane, J. Catalysis, 218, 163-177.
27 Chen H.Y., & Sachtler W.M.H. (1998). Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor, Catalysis Today, 42, 73-83.
28 Joyner R., Stockenhuber M. (1999). Preparation, Characterization, and Performance of Fe−ZSM-5 Catalysts, J. Phys. Chem. B, 103, 5963–5976.
29 Joyner R.W., & Stockenhuber M. (1997). Unusual structure and stability of iron-oxygen nano- clusters in Fe-ZSM-5 catalysts. Catalysis Letters, 45, 15–19.
30 Schwidder M., Kumar M.S., Klementiev K., Pohl M.M., Brückner A., & Grünert, W. (2005). Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: I. Relations between active site structure and catalytic performance, J. Catalysis, 231, 314-330.
31 Krishna K., & Makkee M. (2006). Preparation of Fe-ZSM-5 with enhanced activity and stability for SCR of NOx. Catalysis Today, 114, 23-30.
32 Hensen E.J.M., Zhu Q., & van Santen R.A. (2003). Extraframework Fe-Al-O species occluded in MFI zeolite as the active species in the oxidation of benzene to phenol with nitrous oxide, J. Catalysis, 220, 260-264.
33 Zecchina A., Rivallan M., Berlier G., Lamberti C., & Ricchiardi, G. (2007). Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts, Phys. Chem. Chem. Phys., 9, 3483-99.
34 Sun K., Xia H., Feng Z., van Santen R., Hensen E., & Li C. (2008). Active sites in Fe/ZSM-5 for nitrous oxide decomposition and benzene hydroxylation with nitrous oxide, J. Catal., 254, 383-396.
35 Panov G.I., Uriarte A.K., Rodkin M.A., & Sobolev V.I. (1998). Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites, Catal. Today, 41, 365-385.
36 El-Malki E.M., van Santen R.A., & Sachtler W.M.H. (2000). Active Sites in Fe/MFI Catalysts for NOx Reduction and Oscillating N2O Decomposition, J. Catal., 196, 212-223.
37 Perez-Ramirez J. (2004). Active iron sites associated with the reaction mechanism of N2O conversions over steam-activated FeMFI zeolites, J. Catal., 227, 512-522.
38 Pirngruber G.D., & Roy P.K. (2005). A look into the surface chemistry of N2O decomposition on iron zeolites by transient response experiments, Catal. Today, 110, 199-210.
39 Hammaecher C., Paul J.-F. (2013) Density functional theory study of lactic acid adsorption and dehydration reaction on monoclinic 011, 101, and 111 zirconia surfaces, J. Catal., 300, 174-182.
40 Hermann K., Pettersson L. G. M., Casida M. E., Daul C., Goursot A., Koester A., Proynov E., St-Amant A., Salahub D. R., Carravetta V., Duarte A., Godbout N., Guan J., Jamorski, C., Leboeuf M., Leetmaa M., Nyberg M., Pedocchi L., Sim F., Triguero L., & Vela A. (2005). StoBe-deMon, deMon Software: Stockholm, Berlin.
41 Perdew J. P., Burke K., & Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865−3868.
42 Hammer B., Hansen L. B., & Nørskov J. K. (1999). Improved Adsorption Energetics within Density-Functional Theory using Revised Perdew-Burke-Ernzerhof Functionals. Phys. Rev. B, 59, 7413−7421.
43 Labanowski J. K., & Anzelm J. W., Eds. (1991). Density Functional Methods in Chemistry. Springer-Verlag: New York.
44 Jasiński R., Demchuk O.M., & Babyuk D. (2017). A Quantum-Chemical DFT Approach to Elucidation of the Chirality Transfer Mechanism of the Enantioselective Suzuki-Miyaura Cross-Coupling Reaction. Journal of Chemistry, 2017, 3617527.
45 Mulliken R. S. (1955). Electronic Population Analysis on LCAO−MO Molecular Wave Functions. J. Chem. Phys., 23, 1833−1845.
46 Mayer I. (1983) Charge, Bond Order and Valence in the ab initio SCF Theory, Chem. Phys. Lett., 97, 270−274.
47 Mayer I. (1987). Bond Orders and Valences: Role of d-Orbitals for Hypervalent Sulphur. J. Mol. Struct. (THEOCHEM), 149, 81−89.
48 Database of Zeolite Structure, International Zeolite Association (IZA), http://www.iza-structure.org/databases/.
49 Szostak R., Pan J. M., & Lillerud K. P. (1995). High-resolution TEM imaging of extreme faulting in natural zeolite tschernichite, J. Phys. Chem., 99, 2104–2109.
50 First E. L., Gounaris C. E., Wei J., & Floudas C. A. (2011). Computational characterization of zeolite porous networks: an automated approach, Phys. Chem. Chem. Phys.,13, 17339-17358.
51 Aida T.M., Ikarashi A., Saito Y., Watanabe M., Smith Jr. R.L., & Arai, K. (2009). Dehydration of lactic acid to acrylic acid in high temperature water at high pressures, J. of Supercritical Fluids, 50, 257-264.
2 Rinaldi R., & Schüth F. (2009). Design of solid catalysts for the conversion of biomass, Energy Environ. Sci., 2, 610-626.
3 Stöcker M. (2008). Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials, Angew Chem Int Ed Eng., 47, 9200-11.
4 Montejo-Valencia B. D., Salcedo-Pérez, J. L., & Curet-Arana, M. C. J. (2016). DFT Study of Closed and Open Sites of BEA, FAU, MFI, and BEC Zeolites Substituted with Tin and Titanium, J. Phys. Chem. C, 120, 2176–2186.
5 Osmundsen C. M., Holm M. S., Dahl S., & Taarning, E. (2012). Tin-containing silicates: structure–activity relations, Proc. R. Soc. London, Ser. A, 468, 2000-2016.
6 Wolf P., Valla M., Rossini A. J., Comas-Vives A., Núñez-Zarur F., Malaman B., Lesage A., Emsley L., Copéret C., & Hermans I., (2014). NMR signatures of the active sites in Sn-β zeolite, Angew Chem Int Ed Eng., 53,10179-83.
7 Corma A., Domine M. E., Nemeth L., & Valencia S. (2002). Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerwein−Ponndorf−Verley Reaction), J. Am. Chem. Soc., 124, 3194–3195.
8 Lew C. M., Rajabbeigi N., & Tsapatsis M. (2012). Tin-containing zeolite for the isomerization of cellulosic sugars, Microporous and Mesoporous Materials, 153, 55-58.
9 Yang G., Pidko E., & Hensen E. J. M. (2013). Structure, Stability, and Lewis Acidity of Mono and Double Ti, Zr, and Sn Framework Substitutions in BEA Zeolites: A Periodic Density Functional Theory Study, J. Phys. Chem. C, 117, 3976–3986.
10 Boronat M., Concepcion P., Corma A., Renz M., & Valencia S. (2005). Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. J. Catal., 234, 111–118.
11 Sun Q., Gao Z.X., Chen H.Y., & Sachtler W. (2001) Reduction of NOx with Ammonia over Fe/MFI: Reaction Mechanism Based on Isotopic Labeling. Journal of Catalysis, 201, 89-99.
12 Heindrich F., Schmidt C., Loeffler E., Menzel M., & Gruenert W. (2002). Fe–ZSM-5 Catalysts for the Selective Reduction of NO by Isobutane—The Problem of the Active Sites, J. Catalysis, 212, 157-172.
13 Kröcher O., Devadas M., Elsener M., Wokaun A., Soger N., Pfeifer M., Demel Y., & Mussmann L. (2006) Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5, Appl. Catalysis B: Environmental, 67, 187-196.
14 Boroń P., Rutkowska M., Gil B., Marszałek B., Chmielarz L., & Dzwigaj S. (2019). Experimental Evidence of the Mechanism of Selective Catalytic Reduction of NO with NH3 over Fe-Containing BEA Zeolites, ChemSusChem 12, 692-705.
15 Schwidder M., Grünert W., Bentrup U., & Brückner A. (2006). Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Part II. Assessing the function of different Fe sites by spectroscopic in situ studies, J. Catalysis, 239, 173-186.
16 Heinrich F., Schmidt C., Löffler E., Menzel M., & Grünert W. (2002). Fe-ZSM-5 catalysts for the selective reduction of NO by isobutane - The problem of the active sites, J. Catalysis, 212, 157-172.
17 Rivallan M., Ricchiardi G., Bordiga S., Zecchina A. (2009). Adsorption and reactivity of nitrogen oxides (NO2, NO, N2O) on Fe–zeolites, J. Catalysis, 264, 104-116.
18 Pirutko L.V., Chernyavsky V.S., Starokon E.V., Ivanov A.A., Kharitonov A.S., & Panov G.I. (2009). The role of α-sites in N2O decomposition over FeZSM-5. Comparison with the oxidation of benzene to phenol, Applied Catalysis B: Environmental, 91, 174-179.
19 Fellah M.F., van Santen R.A., & Onal, I. (2009). Oxidation of benzene to phenol by N2O on an Fe2+-ZSM-5 cluster: A density functional theory study, J. Physical Chemistry C, 113, 15307-15313.
20 Yuranov I., Bulushev D.A., Renken A., & Kiwi-Minsker, L. (2007). Benzene to phenol hydroxylation with N2O over Fe-Beta and Fe-ZSM-5: Comparison of activity per Fe-site. Applied Catalysis A: General, 319, 128-136.
21 Ivanov D.P., Piryutko L.V., & Sobolev, V.I. (2004). Biphenyl oxidation with nitrous oxide on MFI zeolites. Petroleum Chemistry, 44, 322-327.
22 Ehrich H., Schwieger W., Jahnisch K. (2004). Investigations on the selective oxidation of benzonitrile using nitrous oxide catalyzed by modified ZSM-5 zeolites, Applied Catalysis A: General, 272, 311-319.
23 Czekaj I., Brandenberger S., & Kröcher, O. (2013) Theoretical studies of HNCO adsorption at stabilized iron complexes in the ZSM-5 framework, Microporous Mesoporous Materials, 169, 97-102.
24 Chen B., Liu N., Liu X., Zhang R., Li Y., Li Y., & Sun, X. (2011) Study on the direct decomposition of nitrous oxide over Fe-beta zeolites: From experiment to theory, Catalysis Today, 175, 245-255.
25 Dai, C., Lei, Z., Wang, Y., Zhang, R., & Chen, B. (2013). Reduction of N2O by CO over Fe- and Cu-BEA zeolites: An experimental and computational study of the mechanism, Microporous and Mesoporous Materials, 167, 254-266.
26 Battiston A.A., Bitter J.H., & Koningsberger D.C. (2003). Reactivity of binuclear Fe complexes in over-exchanged Fe/ZSM5, studied by in situ XAFS spectroscopy 2. Selective catalytic reduction of NO with isobutane, J. Catalysis, 218, 163-177.
27 Chen H.Y., & Sachtler W.M.H. (1998). Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor, Catalysis Today, 42, 73-83.
28 Joyner R., Stockenhuber M. (1999). Preparation, Characterization, and Performance of Fe−ZSM-5 Catalysts, J. Phys. Chem. B, 103, 5963–5976.
29 Joyner R.W., & Stockenhuber M. (1997). Unusual structure and stability of iron-oxygen nano- clusters in Fe-ZSM-5 catalysts. Catalysis Letters, 45, 15–19.
30 Schwidder M., Kumar M.S., Klementiev K., Pohl M.M., Brückner A., & Grünert, W. (2005). Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: I. Relations between active site structure and catalytic performance, J. Catalysis, 231, 314-330.
31 Krishna K., & Makkee M. (2006). Preparation of Fe-ZSM-5 with enhanced activity and stability for SCR of NOx. Catalysis Today, 114, 23-30.
32 Hensen E.J.M., Zhu Q., & van Santen R.A. (2003). Extraframework Fe-Al-O species occluded in MFI zeolite as the active species in the oxidation of benzene to phenol with nitrous oxide, J. Catalysis, 220, 260-264.
33 Zecchina A., Rivallan M., Berlier G., Lamberti C., & Ricchiardi, G. (2007). Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts, Phys. Chem. Chem. Phys., 9, 3483-99.
34 Sun K., Xia H., Feng Z., van Santen R., Hensen E., & Li C. (2008). Active sites in Fe/ZSM-5 for nitrous oxide decomposition and benzene hydroxylation with nitrous oxide, J. Catal., 254, 383-396.
35 Panov G.I., Uriarte A.K., Rodkin M.A., & Sobolev V.I. (1998). Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites, Catal. Today, 41, 365-385.
36 El-Malki E.M., van Santen R.A., & Sachtler W.M.H. (2000). Active Sites in Fe/MFI Catalysts for NOx Reduction and Oscillating N2O Decomposition, J. Catal., 196, 212-223.
37 Perez-Ramirez J. (2004). Active iron sites associated with the reaction mechanism of N2O conversions over steam-activated FeMFI zeolites, J. Catal., 227, 512-522.
38 Pirngruber G.D., & Roy P.K. (2005). A look into the surface chemistry of N2O decomposition on iron zeolites by transient response experiments, Catal. Today, 110, 199-210.
39 Hammaecher C., Paul J.-F. (2013) Density functional theory study of lactic acid adsorption and dehydration reaction on monoclinic 011, 101, and 111 zirconia surfaces, J. Catal., 300, 174-182.
40 Hermann K., Pettersson L. G. M., Casida M. E., Daul C., Goursot A., Koester A., Proynov E., St-Amant A., Salahub D. R., Carravetta V., Duarte A., Godbout N., Guan J., Jamorski, C., Leboeuf M., Leetmaa M., Nyberg M., Pedocchi L., Sim F., Triguero L., & Vela A. (2005). StoBe-deMon, deMon Software: Stockholm, Berlin.
41 Perdew J. P., Burke K., & Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865−3868.
42 Hammer B., Hansen L. B., & Nørskov J. K. (1999). Improved Adsorption Energetics within Density-Functional Theory using Revised Perdew-Burke-Ernzerhof Functionals. Phys. Rev. B, 59, 7413−7421.
43 Labanowski J. K., & Anzelm J. W., Eds. (1991). Density Functional Methods in Chemistry. Springer-Verlag: New York.
44 Jasiński R., Demchuk O.M., & Babyuk D. (2017). A Quantum-Chemical DFT Approach to Elucidation of the Chirality Transfer Mechanism of the Enantioselective Suzuki-Miyaura Cross-Coupling Reaction. Journal of Chemistry, 2017, 3617527.
45 Mulliken R. S. (1955). Electronic Population Analysis on LCAO−MO Molecular Wave Functions. J. Chem. Phys., 23, 1833−1845.
46 Mayer I. (1983) Charge, Bond Order and Valence in the ab initio SCF Theory, Chem. Phys. Lett., 97, 270−274.
47 Mayer I. (1987). Bond Orders and Valences: Role of d-Orbitals for Hypervalent Sulphur. J. Mol. Struct. (THEOCHEM), 149, 81−89.
48 Database of Zeolite Structure, International Zeolite Association (IZA), http://www.iza-structure.org/databases/.
49 Szostak R., Pan J. M., & Lillerud K. P. (1995). High-resolution TEM imaging of extreme faulting in natural zeolite tschernichite, J. Phys. Chem., 99, 2104–2109.
50 First E. L., Gounaris C. E., Wei J., & Floudas C. A. (2011). Computational characterization of zeolite porous networks: an automated approach, Phys. Chem. Chem. Phys.,13, 17339-17358.
51 Aida T.M., Ikarashi A., Saito Y., Watanabe M., Smith Jr. R.L., & Arai, K. (2009). Dehydration of lactic acid to acrylic acid in high temperature water at high pressures, J. of Supercritical Fluids, 50, 257-264.