How to cite this paper
Yazdanpanah, M., Khanmohammadi, M., Aghdam, R., Shabani, K & Rajabi, M. (2014). Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design.Current Chemistry Letters, 3(3), 175-182.
Refrences
1. Mu, X., Liu, Y., Fang, D., Wang, Z., Nie, J., and Ma, G. (2012) Electric field induced phase separation on electrospinning polyelectrolyte based core-shell nanofibers, Carbohyd. Polym., 90, 1582-6.
2. Barakat, N. A. M., Kanjwal, M. A., Sheikh, F. A., and Kim, H. Y. (2009) Spider-net within the N6, PVA and PU electrospun nanofiber mats using salt addition: Novel strategy in the electrospinning process, Polymer, 50, 4389-4396.
3. Singh, S., Singh, V., Vijayakumar, M., and Bhanu Prasad, V. V. (2012) ZrO2 fibers obtained from the halide free synthesis of non-beaded PVA/Zr n-propoxide electrospun fibrous composites, Ceram. Int., 39, 1153-1161.
4. Chronakis, I. S. (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review, J. Mater. Process. Technol., 167, 283–293.
5. Bhardwaj, N., and Kundu, S. C. (2010) Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv., 28, 325–347.
6. Liu, Y., Ma, G., Fang, D., Xu, J., Zhang, H., and Nie, J. (2011) Effects of solution properties and electric field on the electrospinning of hyaluronic acid, Carbohyd. Polym., 83, 1011–1015.
7. Tiwari, S. K., and Venkatraman, S. S. (2012) Importance of viscosity parameters in electrospinning: of monolithic and core–shell fibers, Mater. Sci. Eng., C., 32, 1037-1042.
8. Chae, H. H., Kim, B., Yang, K. S., and Rhee, J. I. (2011) Synthesis and antibacterial performance of size-tunable silver nanoparticles with electrospun nanofiber composites, Synth. Met., 161, 2124– 2128.
9. Uslu, I., Da?tan, H., Alta?, A., Yayli, A., Atakol, O., and Aksu, M. L. (2013) Preparation and Characterization of PVA/Boron Polymer Produced by an Electrospinning Technique, e-Polymer 7 1568–1573.
10. Su, P., Wang, C., Yang, X., Chen, X., Gao, C., Feng, X., Chen, J., Ye, J., and Gou, Z. (2011) Electrospinning of chitosan nanofibers: The favorable effect of metal ions, Carbohyd. Polym., 84, 239–246.
11. Thompson, C. J., Chase, G. G., Yarin, A. L., and Reneker, D.H. (2007) Effects of parameters on nanofiber diameter determined from electrospinning model, Polymer, 48, 486913-6922.
12. He, J., Wu, Y., And Zuo, W. (2005) Critical length of straight jet in electrospinning, Polymer, 46, 12637-12640.
13. Pongstabodee, S., Monyanon, S., and Luengnaruemitchai, A., (2012) Applying a face-centered central composite design to optimize the preferential CO oxidation over a PtAu/CeO2-ZnO catalyst, Int. J. Hydrogen Energy., 37, 4749 -4761.
14. Diler, E. A., and Ipek, R. (2012) An experimental and statistical study of interaction effects of matrix particle size, reinforcement particle size and volume fraction on the flexural strength of Al–SiCp composites by P/M using central composite design, Mater. Sci. Eng., A., 548, 43– 55.
15. Aslan, N. (2008) Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration, Powder Technol., 185, 80-86.
16. Cho, I., and Zoh, K. (2007) Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design, Dyes. Pigm., 75, 533-543.
17. Kong, L., and Ziegler, G. R. (2013) Quantitative relationship between electrospinning parameters and starch fiber diameter, Carbohyd. Polym., 92, 1416-22.
18. Sarlak, N., Farahmandnejad, M. A., Shakhesi, S., and Shabani, K. ,(2012) Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD), Chem. Eng. J., 210, 410–416.
19. Myer, R. H., Montgomery, D. C., & Cook, C. M. A. (2002) Response Surface Methodology: Process and Product Optimization Using Designed Experiments. NJ, USA: 2st ed., John Wiley and Sons Inc,.
2. Barakat, N. A. M., Kanjwal, M. A., Sheikh, F. A., and Kim, H. Y. (2009) Spider-net within the N6, PVA and PU electrospun nanofiber mats using salt addition: Novel strategy in the electrospinning process, Polymer, 50, 4389-4396.
3. Singh, S., Singh, V., Vijayakumar, M., and Bhanu Prasad, V. V. (2012) ZrO2 fibers obtained from the halide free synthesis of non-beaded PVA/Zr n-propoxide electrospun fibrous composites, Ceram. Int., 39, 1153-1161.
4. Chronakis, I. S. (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review, J. Mater. Process. Technol., 167, 283–293.
5. Bhardwaj, N., and Kundu, S. C. (2010) Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv., 28, 325–347.
6. Liu, Y., Ma, G., Fang, D., Xu, J., Zhang, H., and Nie, J. (2011) Effects of solution properties and electric field on the electrospinning of hyaluronic acid, Carbohyd. Polym., 83, 1011–1015.
7. Tiwari, S. K., and Venkatraman, S. S. (2012) Importance of viscosity parameters in electrospinning: of monolithic and core–shell fibers, Mater. Sci. Eng., C., 32, 1037-1042.
8. Chae, H. H., Kim, B., Yang, K. S., and Rhee, J. I. (2011) Synthesis and antibacterial performance of size-tunable silver nanoparticles with electrospun nanofiber composites, Synth. Met., 161, 2124– 2128.
9. Uslu, I., Da?tan, H., Alta?, A., Yayli, A., Atakol, O., and Aksu, M. L. (2013) Preparation and Characterization of PVA/Boron Polymer Produced by an Electrospinning Technique, e-Polymer 7 1568–1573.
10. Su, P., Wang, C., Yang, X., Chen, X., Gao, C., Feng, X., Chen, J., Ye, J., and Gou, Z. (2011) Electrospinning of chitosan nanofibers: The favorable effect of metal ions, Carbohyd. Polym., 84, 239–246.
11. Thompson, C. J., Chase, G. G., Yarin, A. L., and Reneker, D.H. (2007) Effects of parameters on nanofiber diameter determined from electrospinning model, Polymer, 48, 486913-6922.
12. He, J., Wu, Y., And Zuo, W. (2005) Critical length of straight jet in electrospinning, Polymer, 46, 12637-12640.
13. Pongstabodee, S., Monyanon, S., and Luengnaruemitchai, A., (2012) Applying a face-centered central composite design to optimize the preferential CO oxidation over a PtAu/CeO2-ZnO catalyst, Int. J. Hydrogen Energy., 37, 4749 -4761.
14. Diler, E. A., and Ipek, R. (2012) An experimental and statistical study of interaction effects of matrix particle size, reinforcement particle size and volume fraction on the flexural strength of Al–SiCp composites by P/M using central composite design, Mater. Sci. Eng., A., 548, 43– 55.
15. Aslan, N. (2008) Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration, Powder Technol., 185, 80-86.
16. Cho, I., and Zoh, K. (2007) Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design, Dyes. Pigm., 75, 533-543.
17. Kong, L., and Ziegler, G. R. (2013) Quantitative relationship between electrospinning parameters and starch fiber diameter, Carbohyd. Polym., 92, 1416-22.
18. Sarlak, N., Farahmandnejad, M. A., Shakhesi, S., and Shabani, K. ,(2012) Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD), Chem. Eng. J., 210, 410–416.
19. Myer, R. H., Montgomery, D. C., & Cook, C. M. A. (2002) Response Surface Methodology: Process and Product Optimization Using Designed Experiments. NJ, USA: 2st ed., John Wiley and Sons Inc,.