How to cite this paper
Namazi, A & Khodabakhshi, M. (2023). A fair-biased allocation of investment between economic sectors using social accounting matrix multiplier analysis.Accounting, 9(3), 191-202.
Refrences
Abdin, Z., Prabantarikso, R. M., Fahmy, E., & Farhan, A. (2022). Analysis of the efficiency of insurance companies in Indonesia. Decision Science Letters, 11(2). https://doi.org/10.5267/j.dsl.2022.1.002
Adler, N., Friedman, L., & Sinuany-Stern, Z. (2002). Review of ranking methods in the data envelopment analysis context. European Journal of Operational Research, 140(2), 249–265. https://doi.org/10.1016/S0377-2217(02)00068-1
Akkemik, K. A. (2012). Assessing the importance of international tourism for the Turkish economy: A social accounting matrix analysis. Tourism Management, 33(4), 790–801. https://doi.org/10.1016/j.tourman.2011.09.002
Alirezaee, M. R. (1999). A Complete Efficiency Ranking of Decision Making Units in DEA. Analysis, 266(1978), 1984–1984.
Amini, M., Dabbagh, R., & Omrani, H. (2019). A fuzzy data envelopment analysis based on credibility theory for estimating road safety. Decision Science Letters, 8(3). https://doi.org/10.5267/j.dsl.2019.1.001
Argyris, N., Karsu, Ö., & Yavuz, M. (2022). Fair resource allocation: Using welfare-based dominance constraints. European Journal of Operational Research, 297(2). https://doi.org/10.1016/j.ejor.2021.05.003
Beasley, J. E. (2003). Allocating fixed costs and resources via data envelopment analysis. European Journal of Operational Research, 147(1), 198–216. https://doi.org/10.1016/S0377-2217(02)00244-8
Borrero, D. v., Hinojosa, M. A., & Mármol, A. M. (2016). DEA production games and Owen allocations. European Journal of Operational Research, 252(3). https://doi.org/10.1016/j.ejor.2016.01.053
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
Chen, Y., Liang, L., & Yang, F. (2006). A DEA game model approach to supply chain efficiency. Annals of Operations Research, 145(1), 5–13. https://doi.org/10.1007/s10479-006-0022-y
Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA) - Thirty years on. European Journal of Operational Research, 192(1), 1–17. https://doi.org/10.1016/j.ejor.2008.01.032
Defourny, J., & Thorbecke, E. (1984). Structural Path Analysis and Multiplier Decomposition within a Social Accounting Matrix Framework. The Economic Journal, 94(373), 111. https://doi.org/10.2307/2232220
Diakonikolas, J., Fazel, M., & Orecchia, L. (2021). Fair packing and covering on a relative scale. SIAM Journal on Optimization, 30(4). https://doi.org/10.1137/19M1288516
Goncalves Machado, L., de Mello, J. C. C. B. S., & Costa Roboredo, M. (2016). Efficiency Evaluation of Brazilian Electrical Distributors Using DEA Game and Cluster Analysis. IEEE Latin America Transactions, 14(11). https://doi.org/10.1109/TLA.2016.7795820
Hosoe, N., Gasawa, K., & Hashimoto, H. (2010). Textbook of Computable General Equilibrium Modelling. In Textbook of Computable General Equilibrium Modelling (Issue 2010). https://doi.org/10.1057/9780230281653
Jiang, R., Yang, Y., Chen, Y., & Liang, L. (2021). Corporate diversification, firm productivity and resource allocation decisions: The data envelopment analysis approach. Journal of the Operational Research Society, 72(5). https://doi.org/10.1080/01605682.2019.1568841
Karthiban, K., & Raj, J. S. (2020). An efficient green computing fair resource allocation in cloud computing using modified deep reinforcement learning algorithm. Soft Computing, 24(19). https://doi.org/10.1007/s00500-020-04846-3
Khodabakhshi, M., & Aryavash, K. (2014). The fair allocation of common fixed cost or revenue using DEA concept. Annals of Operations Research, 214(1), 187–194. https://doi.org/10.1007/s10479-012-1117-2
Korhonen, P., & Syrjänen, M. (2004). Resource Allocation Based on Efficiency Analysis. Management Science, 50(8), 1134–1144. https://doi.org/10.1287/mnsc.1040.0244
Li, C., Wan, T., Han, J., & Jiang, W. (2022). Towards Distributed Lexicographically Fair Resource Allocation with an Indivisible Constraint. Mathematics, 10(3). https://doi.org/10.3390/math10030324
Li, S., Jahanshahloo, G. R., & Khodabakhshi, M. (2007). A super-efficiency model for ranking efficient units in data envelopment analysis. Applied Mathematics and Computation, 184(2), 638–648. https://doi.org/10.1016/j.amc.2006.06.063
Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). The DEA Game Cross-Efficiency Model and Its Nash Equilibrium. Operations Research, 56(5), 1278–1288. https://doi.org/10.1287/opre.1070.0487
Lozano, S., & Villa, G. (2004). Centralized resource allocation using data envelopment analysis. Journal of Productivity Analysis, 22(1–2). https://doi.org/10.1023/b:prod.0000034748.22820.33
Lozano, S., Villa, G., & Brännlund, R. (2009). Centralised reallocation of emission permits using DEA. European Journal of Operational Research, 193(3), 752–760. https://doi.org/10.1016/j.ejor.2007.07.029
Nakabayashi, K., & Tone, K. (2006). Egoist’s dilemma: A DEA game. Omega, 34(2), 135–148. https://doi.org/10.1016/j.omega.2004.08.003
Namazi, A., & Khodabakhshi, M. (2022). A novel game theoretic method on fair economic resource allocation with multiple Criteria. International Journal of Management Science and Engineering Management. https://doi.org/10.1080/17509653.2022.2043196
Per Andersen, & Niels Christian Petersen. (1993). A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Management Science, 39(10), 1261–1264. https://doi.org/10.1287/mnsc.39.10.1261
Pieters, J. (2010). Growth and Inequality in India: Analysis of an Extended Social Accounting Matrix. World Development, 38(3), 270–281. https://doi.org/10.1016/j.worlddev.2009.09.006
Pyatt, G. (1988). A SAM approach to modeling. Journal of Policy Modeling, 10(3), 327–352. https://doi.org/10.1016/0161-8938(88)90026-9
Pyatt, G., & Jeffery, I. R. (1979). Accounting and Fixed Price Multipliers in a Social Accounting Matrix Framework. The Economic Journal, 89(356), 850–873. https://doi.org/10.2307/2231503
Ryan, A., Barchers, C., Christofa, E., & Knodler, M. (2021). Equitable resource allocation for municipal safety: A data envelopment analysis. Transportation Research Part D: Transport and Environment, 97. https://doi.org/10.1016/j.trd.2021.102926
Wen, Y., An, Q., Hu, J., & Chen, X. (2022). DEA game for internal cooperation between an upper-level process and multiple lower-level processes. Journal of the Operational Research Society, 73(9). https://doi.org/10.1080/01605682.2021.1967212
Wichapa, N., Khokhajaikiat, P., & Chaiphet, K. (2020). Aggregating the results of benevolent and aggressive models by the critic method for ranking of decision-making units: A case study on seven biomass fuel briquettes generated from agricultural waste. Decision Science Letters, 10(1). https://doi.org/10.5267/j.dsl.2020.10.001
Wu, J., Liang, L., & Chen, Y. (2009). DEA game cross-efficiency approach to Olympic rankings. Omega, 37(4), 909–918. https://doi.org/10.1016/j.omega.2008.07.001
Yan, H., Wei, Q., & Hao, G. (2002). DEA models for resource reallocation and production input/output estimation. European Journal of Operational Research, 136(1), 19–31. https://doi.org/10.1016/S0377-2217(01)00046-7
Yaya, S., Xi, C., Xiaoyang, Z., & Meixia, Z. (2020). Evaluating the efficiency of China’s healthcare service: A weighted DEA-game theory in a competitive environment. Journal of Cleaner Production, 270. https://doi.org/10.1016/j.jclepro.2020.122431
Yu, U. S., Choi, H. H., & Lee, J. R. (2019). Kuramoto-desync: Distributed and fair resource allocation in a wireless network. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2932425
Zuvekas, C. (2015). Economic Development. In Economic Development. https://doi.org/10.1007/978-1-349-16275-8
Adler, N., Friedman, L., & Sinuany-Stern, Z. (2002). Review of ranking methods in the data envelopment analysis context. European Journal of Operational Research, 140(2), 249–265. https://doi.org/10.1016/S0377-2217(02)00068-1
Akkemik, K. A. (2012). Assessing the importance of international tourism for the Turkish economy: A social accounting matrix analysis. Tourism Management, 33(4), 790–801. https://doi.org/10.1016/j.tourman.2011.09.002
Alirezaee, M. R. (1999). A Complete Efficiency Ranking of Decision Making Units in DEA. Analysis, 266(1978), 1984–1984.
Amini, M., Dabbagh, R., & Omrani, H. (2019). A fuzzy data envelopment analysis based on credibility theory for estimating road safety. Decision Science Letters, 8(3). https://doi.org/10.5267/j.dsl.2019.1.001
Argyris, N., Karsu, Ö., & Yavuz, M. (2022). Fair resource allocation: Using welfare-based dominance constraints. European Journal of Operational Research, 297(2). https://doi.org/10.1016/j.ejor.2021.05.003
Beasley, J. E. (2003). Allocating fixed costs and resources via data envelopment analysis. European Journal of Operational Research, 147(1), 198–216. https://doi.org/10.1016/S0377-2217(02)00244-8
Borrero, D. v., Hinojosa, M. A., & Mármol, A. M. (2016). DEA production games and Owen allocations. European Journal of Operational Research, 252(3). https://doi.org/10.1016/j.ejor.2016.01.053
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
Chen, Y., Liang, L., & Yang, F. (2006). A DEA game model approach to supply chain efficiency. Annals of Operations Research, 145(1), 5–13. https://doi.org/10.1007/s10479-006-0022-y
Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA) - Thirty years on. European Journal of Operational Research, 192(1), 1–17. https://doi.org/10.1016/j.ejor.2008.01.032
Defourny, J., & Thorbecke, E. (1984). Structural Path Analysis and Multiplier Decomposition within a Social Accounting Matrix Framework. The Economic Journal, 94(373), 111. https://doi.org/10.2307/2232220
Diakonikolas, J., Fazel, M., & Orecchia, L. (2021). Fair packing and covering on a relative scale. SIAM Journal on Optimization, 30(4). https://doi.org/10.1137/19M1288516
Goncalves Machado, L., de Mello, J. C. C. B. S., & Costa Roboredo, M. (2016). Efficiency Evaluation of Brazilian Electrical Distributors Using DEA Game and Cluster Analysis. IEEE Latin America Transactions, 14(11). https://doi.org/10.1109/TLA.2016.7795820
Hosoe, N., Gasawa, K., & Hashimoto, H. (2010). Textbook of Computable General Equilibrium Modelling. In Textbook of Computable General Equilibrium Modelling (Issue 2010). https://doi.org/10.1057/9780230281653
Jiang, R., Yang, Y., Chen, Y., & Liang, L. (2021). Corporate diversification, firm productivity and resource allocation decisions: The data envelopment analysis approach. Journal of the Operational Research Society, 72(5). https://doi.org/10.1080/01605682.2019.1568841
Karthiban, K., & Raj, J. S. (2020). An efficient green computing fair resource allocation in cloud computing using modified deep reinforcement learning algorithm. Soft Computing, 24(19). https://doi.org/10.1007/s00500-020-04846-3
Khodabakhshi, M., & Aryavash, K. (2014). The fair allocation of common fixed cost or revenue using DEA concept. Annals of Operations Research, 214(1), 187–194. https://doi.org/10.1007/s10479-012-1117-2
Korhonen, P., & Syrjänen, M. (2004). Resource Allocation Based on Efficiency Analysis. Management Science, 50(8), 1134–1144. https://doi.org/10.1287/mnsc.1040.0244
Li, C., Wan, T., Han, J., & Jiang, W. (2022). Towards Distributed Lexicographically Fair Resource Allocation with an Indivisible Constraint. Mathematics, 10(3). https://doi.org/10.3390/math10030324
Li, S., Jahanshahloo, G. R., & Khodabakhshi, M. (2007). A super-efficiency model for ranking efficient units in data envelopment analysis. Applied Mathematics and Computation, 184(2), 638–648. https://doi.org/10.1016/j.amc.2006.06.063
Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). The DEA Game Cross-Efficiency Model and Its Nash Equilibrium. Operations Research, 56(5), 1278–1288. https://doi.org/10.1287/opre.1070.0487
Lozano, S., & Villa, G. (2004). Centralized resource allocation using data envelopment analysis. Journal of Productivity Analysis, 22(1–2). https://doi.org/10.1023/b:prod.0000034748.22820.33
Lozano, S., Villa, G., & Brännlund, R. (2009). Centralised reallocation of emission permits using DEA. European Journal of Operational Research, 193(3), 752–760. https://doi.org/10.1016/j.ejor.2007.07.029
Nakabayashi, K., & Tone, K. (2006). Egoist’s dilemma: A DEA game. Omega, 34(2), 135–148. https://doi.org/10.1016/j.omega.2004.08.003
Namazi, A., & Khodabakhshi, M. (2022). A novel game theoretic method on fair economic resource allocation with multiple Criteria. International Journal of Management Science and Engineering Management. https://doi.org/10.1080/17509653.2022.2043196
Per Andersen, & Niels Christian Petersen. (1993). A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Management Science, 39(10), 1261–1264. https://doi.org/10.1287/mnsc.39.10.1261
Pieters, J. (2010). Growth and Inequality in India: Analysis of an Extended Social Accounting Matrix. World Development, 38(3), 270–281. https://doi.org/10.1016/j.worlddev.2009.09.006
Pyatt, G. (1988). A SAM approach to modeling. Journal of Policy Modeling, 10(3), 327–352. https://doi.org/10.1016/0161-8938(88)90026-9
Pyatt, G., & Jeffery, I. R. (1979). Accounting and Fixed Price Multipliers in a Social Accounting Matrix Framework. The Economic Journal, 89(356), 850–873. https://doi.org/10.2307/2231503
Ryan, A., Barchers, C., Christofa, E., & Knodler, M. (2021). Equitable resource allocation for municipal safety: A data envelopment analysis. Transportation Research Part D: Transport and Environment, 97. https://doi.org/10.1016/j.trd.2021.102926
Wen, Y., An, Q., Hu, J., & Chen, X. (2022). DEA game for internal cooperation between an upper-level process and multiple lower-level processes. Journal of the Operational Research Society, 73(9). https://doi.org/10.1080/01605682.2021.1967212
Wichapa, N., Khokhajaikiat, P., & Chaiphet, K. (2020). Aggregating the results of benevolent and aggressive models by the critic method for ranking of decision-making units: A case study on seven biomass fuel briquettes generated from agricultural waste. Decision Science Letters, 10(1). https://doi.org/10.5267/j.dsl.2020.10.001
Wu, J., Liang, L., & Chen, Y. (2009). DEA game cross-efficiency approach to Olympic rankings. Omega, 37(4), 909–918. https://doi.org/10.1016/j.omega.2008.07.001
Yan, H., Wei, Q., & Hao, G. (2002). DEA models for resource reallocation and production input/output estimation. European Journal of Operational Research, 136(1), 19–31. https://doi.org/10.1016/S0377-2217(01)00046-7
Yaya, S., Xi, C., Xiaoyang, Z., & Meixia, Z. (2020). Evaluating the efficiency of China’s healthcare service: A weighted DEA-game theory in a competitive environment. Journal of Cleaner Production, 270. https://doi.org/10.1016/j.jclepro.2020.122431
Yu, U. S., Choi, H. H., & Lee, J. R. (2019). Kuramoto-desync: Distributed and fair resource allocation in a wireless network. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2932425
Zuvekas, C. (2015). Economic Development. In Economic Development. https://doi.org/10.1007/978-1-349-16275-8