How to cite this paper
Hendalianpour, A., Razmi, J & Gheitasi, M. (2017). Comparing clustering models in bank customers: Based on Fuzzy relational clustering approach.Accounting, 3(2), 81-94.
Refrences
Akman, G. (2015). Evaluating suppliers to include green supplier development programs via fuzzy c-means and VIKOR methods. Computers & Industrial Engineering, 86, 69-82.
Aliguliyev, R. M. (2009). Performance evaluation of density-based clustering methods. Information Sciences, 179(20), 3583-3602.
Chehreghani, M. H., Abolhassani, H., & Chehreghani, M. H. (2009). Density link-based methods for clustering web pages. Decision Support Systems,47(4), 374-382.
Clir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic. Theory and application. Prentice Hall PTR.
Eberle, D. G., Daudi, E. X., Muiuane, E. A., Nyabeze, P., & Pontavida, A. M. (2012). Crisp clustering of airborne geophysical data from the Alto Ligonha pegmatite field, northeastern Mozambique, to predict zones of increased rare earth element potential. Journal of African Earth Sciences,62(1), 26-34.
Feng, L., Qiu, M. H., Wang, Y. X., Xiang, Q. L., Yang, Y. F., & Liu, K. (2010). A fast divisive clustering algorithm using an improved discrete particle swarm optimizer. Pattern Recognition Letters, 31(11), 1216-1225.
Filippone, M., Camastra, F., Masulli, F., & Rovetta, S. (2008). A survey of kernel and spectral methods for clustering. Pattern recognition, 41(1), 176-190.
Höppner, F. (1999). Fuzzy cluster analysis: methods for classification, data analysis and image recognition. John Wiley & Sons.
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666.
Jiang, H., Yi, S., Li, J., Yang, F., & Hu, X. (2010). Ant clustering algorithm with K-harmonic means clustering. Expert Systems with Applications,37(12), 8679-8684.
Jiménez-García, R., Esteban-Hernández, J., Hernández-Barrera, V., Jimenez-Trujillo, I., López-de-Andrés, A., & Garrido, P. C. (2011). Clustering of unhealthy lifestyle behaviors is associated with nonadherence to clinical preventive recommendations among adults with diabetes. Journal of Diabetes and its Complications, 25(2), 107-113.
Kannappan, A., Tamilarasi, A., & Papageorgiou, E. I. (2011). Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder. Expert Systems with Applications,38(3), 1282-1292.
Khan, S. S., & Ahmad, A. (2004). Cluster center initialization algorithm for K-means clustering. Pattern recognition letters, 25(11), 1293-1302.
Lee, J. W., Yeung, D. S., & Tsang, E. C. (2005). Hierarchical clustering based on ordinal consistency. Pattern recognition, 38(11), 1913-1925.
Liang, G. S., Chou, T. Y., & Han, T. C. (2005). Cluster analysis based on fuzzy equivalence relation. European Journal of Operational Research,166(1), 160-171.
Núñez, A., De Schutter, B., Sáez, D., & Škrjanc, I. (2014). Hybrid-fuzzy modeling and identification. Applied Soft Computing, 17, 67-78.
Peters, G., Crespo, F., Lingras, P., & Weber, R. (2013). Soft clustering–fuzzy and rough approaches and their extensions and derivatives. International Journal of Approximate Reasoning, 54(2), 307-322.
Pedrycz, W., & Rai, P. (2008). Collaborative clustering with the use of Fuzzy C-Means and its quantification. Fuzzy Sets and Systems, 159(18), 2399-2427.
Ravi, V., & Zimmermann, H. J. (2000). Fuzzy rule based classification with FeatureSelector and modified threshold accepting. European Journal of Operational Research, 123(1), 16-28.
Rose, K. (1998). Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE, 86(11), 2210-2239.
Schölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10(5), 1299-1319.
Wu, J., Chen, J., Xiong, H., & Xie, M. (2009). External validation measures for K-means clustering: A data distribution perspective. Expert Systems with Applications, 36(3), 6050-6061.
Zhao, Y., & Karypis, G. (2004). Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning,55(3), 311-331.
Zimmermann, H. J. (1996). Fuzzy Control. In Fuzzy Set Theory—and Its Applications (pp. 203-240). Springer Netherlands.
Aliguliyev, R. M. (2009). Performance evaluation of density-based clustering methods. Information Sciences, 179(20), 3583-3602.
Chehreghani, M. H., Abolhassani, H., & Chehreghani, M. H. (2009). Density link-based methods for clustering web pages. Decision Support Systems,47(4), 374-382.
Clir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic. Theory and application. Prentice Hall PTR.
Eberle, D. G., Daudi, E. X., Muiuane, E. A., Nyabeze, P., & Pontavida, A. M. (2012). Crisp clustering of airborne geophysical data from the Alto Ligonha pegmatite field, northeastern Mozambique, to predict zones of increased rare earth element potential. Journal of African Earth Sciences,62(1), 26-34.
Feng, L., Qiu, M. H., Wang, Y. X., Xiang, Q. L., Yang, Y. F., & Liu, K. (2010). A fast divisive clustering algorithm using an improved discrete particle swarm optimizer. Pattern Recognition Letters, 31(11), 1216-1225.
Filippone, M., Camastra, F., Masulli, F., & Rovetta, S. (2008). A survey of kernel and spectral methods for clustering. Pattern recognition, 41(1), 176-190.
Höppner, F. (1999). Fuzzy cluster analysis: methods for classification, data analysis and image recognition. John Wiley & Sons.
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666.
Jiang, H., Yi, S., Li, J., Yang, F., & Hu, X. (2010). Ant clustering algorithm with K-harmonic means clustering. Expert Systems with Applications,37(12), 8679-8684.
Jiménez-García, R., Esteban-Hernández, J., Hernández-Barrera, V., Jimenez-Trujillo, I., López-de-Andrés, A., & Garrido, P. C. (2011). Clustering of unhealthy lifestyle behaviors is associated with nonadherence to clinical preventive recommendations among adults with diabetes. Journal of Diabetes and its Complications, 25(2), 107-113.
Kannappan, A., Tamilarasi, A., & Papageorgiou, E. I. (2011). Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder. Expert Systems with Applications,38(3), 1282-1292.
Khan, S. S., & Ahmad, A. (2004). Cluster center initialization algorithm for K-means clustering. Pattern recognition letters, 25(11), 1293-1302.
Lee, J. W., Yeung, D. S., & Tsang, E. C. (2005). Hierarchical clustering based on ordinal consistency. Pattern recognition, 38(11), 1913-1925.
Liang, G. S., Chou, T. Y., & Han, T. C. (2005). Cluster analysis based on fuzzy equivalence relation. European Journal of Operational Research,166(1), 160-171.
Núñez, A., De Schutter, B., Sáez, D., & Škrjanc, I. (2014). Hybrid-fuzzy modeling and identification. Applied Soft Computing, 17, 67-78.
Peters, G., Crespo, F., Lingras, P., & Weber, R. (2013). Soft clustering–fuzzy and rough approaches and their extensions and derivatives. International Journal of Approximate Reasoning, 54(2), 307-322.
Pedrycz, W., & Rai, P. (2008). Collaborative clustering with the use of Fuzzy C-Means and its quantification. Fuzzy Sets and Systems, 159(18), 2399-2427.
Ravi, V., & Zimmermann, H. J. (2000). Fuzzy rule based classification with FeatureSelector and modified threshold accepting. European Journal of Operational Research, 123(1), 16-28.
Rose, K. (1998). Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE, 86(11), 2210-2239.
Schölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10(5), 1299-1319.
Wu, J., Chen, J., Xiong, H., & Xie, M. (2009). External validation measures for K-means clustering: A data distribution perspective. Expert Systems with Applications, 36(3), 6050-6061.
Zhao, Y., & Karypis, G. (2004). Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning,55(3), 311-331.
Zimmermann, H. J. (1996). Fuzzy Control. In Fuzzy Set Theory—and Its Applications (pp. 203-240). Springer Netherlands.