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 This article introduces an innovative fuzzy-based approach for developing a comprehensive 
portfolio optimization model that effectively accounts for inherent uncertainty while 
incorporating the investor's unique perspective on the dynamic stock market. The multi-
objective optimization framework employs Conditional Drawdown at Risk to enhance investor 
flexibility in determining risk tolerance and optimal investment strategies tailored to specific 
needs. The research is notable for its pioneering use of intelligent methods to systematically 
collect valuable data from the Tehran Stock Exchange under fuzzy uncertainty. It incorporates 
important constraints such as cardinality and ceiling and floor limits for each investment 
period, allowing for a detailed analysis of various stock market scenarios and potential future 
outcomes. A case study is conducted with 25 diverse assets from the top five industry groups 
based on profit per share, from which five shares are thoughtfully selected to effectively 
demonstrate the model's unique effectiveness. The analysis rigorously assesses the model's 
performance in real-world conditions, highlighting the importance of accurately understanding 
the current stock market outlook and trends. To validate the model, the research compares 
results with a portfolio constructed under similar conditions of certainty and risk. The findings 
indicate that portfolios created under certainty yield significantly higher values, suggesting that 
successful portfolio construction is heavily influenced by the prevailing market conditions 
experienced by investors. 
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1. Introduction 

Portfolio theory and its associated subjects are considered some of the most extensively analyzed fields within economic 
and financial research. The widely adopted mean-variance framework introduced by Markowitz (1952, 1959) emphasizes 
the necessity of mitigating the risk associated with a chosen asset portfolio while achieving a specified return and optimizing 
available capital. This approach examines the trade-off between risk and return through the lens of mean and variance 
metrics (Ghanbari et al., 2023). According to Markowitz’s model, investors have the option to either optimize expected 
portfolio returns for a defined level of risk or to minimize investment risk by decreasing the variance of the portfolio for a 
specified target return (Khosravi et al., 2024). 
 
Markowitz's principal contributions are founded upon important assumptions concerning probability distributions and Von 
Neumann–Morgenstern utility functions. Nevertheless, as the complexity of portfolio optimization issues escalates, 
addressing quadratic programming involving a dense covariance matrix becomes increasingly difficult. (Eskorouchi et al., 
2022). Researchers have suggested different approximation methods to reduce these computational challenges (Sharpe, 
1967, 1971; Stone, 1973). The implementation of the index model contributes to the reduction of computational demands 
by integrating "factors" that influence stock prices (Perold, 1984; Sharpe, 1964). 
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Notwithstanding these advancements, the Markowitz model is still considered the most comprehensive framework currently 
available. Although the limitations associated with employing a quadratic approximation for utility functions are 
recognized, the formulation of effective portfolio construction methods has largely been impeded by computational 
challenges. There is a need to improve both the computational and theoretical aspects of Markowitz’s model, Konno & 
Yamazaki (1991) proposed a portfolio optimization framework that employs a mean-absolute deviation risk function as a 
substitute for Markowitz's standard deviation risk function. This model effectively addresses the challenges associated with 
the traditional Markowitz framework while retaining its benefits over equilibrium models. Notably, it enables formulation 
as a linear programming problem, thereby facilitating the resolution of large-scale portfolio optimization challenges 
(Zarezade et al., 2024). 
 
Conventional portfolio optimization models often operate under the assumption that future market conditions can be reliably 
forecasted using historical data. However, this premise becomes problematic in highly volatile financial markets, regardless 
of the accuracy of historical data. To quantitatively address the uncertainties inherent in decision-making when faced with 
imprecise information, it is essential to reconsider this approach, Zadeh (1978) introduced the concept of fuzzy logic. Fuzzy 
set theory has found extensive applications in both linear and nonlinear optimization problems (Björk, 2009); Chen, 2004; 
Liu, 2005; Vijayan & Kumaran, 2009). In situations where parameters are uncertain or unclear, the expected returns of the 
portfolio will similarly display a level of ambiguity. As a result, the portfolio optimization context can be characterized as 
a fuzzy portfolio optimization problem. The primary objective of this study is to empirically evaluate the potential 
advantages of integrating fuzzy logic and Conditional Drawdown at Risk (CDaR) into the portfolio construction process. 
Fuzzy logic presents a robust framework for modeling the inherent imprecision and uncertainty present in financial markets, 
whereas CDaR provides a comprehensive risk measure that takes into account both the magnitude and duration of potential 
losses (Zarezade et al., 2024). By combining these two methodologies, we seek to create a more realistic and effective 
approach to portfolio selection. To fulfill our research objectives, we focus on a selection of companies listed on the Tehran 
Stock Exchange (TSE). Through meticulous identification and assessment of these companies based on various financial 
indicators, we develop a fuzzy portfolio utilizing a comprehensive range of membership functions and fuzzy inference rules. 
Subsequently, we evaluate the performance of this fuzzy portfolio against a specific portfolio optimization technique. 
 
This study contributes several advancements to the existing literature. First, it expands the application of fuzzy logic and 
Conditional Drawdown at Risk (CDaR) in portfolio optimization, providing valuable insights into their effectiveness in the 
context of emerging markets. Second, it offers empirical evidence regarding the performance of fuzzy portfolios when 
compared to traditional methods, highlighting both the potential benefits and limitations of employing a fuzzy logic-based 
approach. Lastly, it presents practical implications for investors and portfolio managers aiming to enhance their investment 
decision-making processes through more adaptive and robust strategies. This research addresses current gaps by specifically 
investigating the performance of fuzzy portfolio optimization using CDaR within the TSE, incorporating the Jiménez 
method for fuzzy analysis to improve the optimization process. Furthermore, a targeted technique for stock selection from 
the available options is employed, thereby enhancing the relevance and applicability of the findings. 
 
The structure of this paper is organized as follows: Section 2 provides a comprehensive review of the relevant literature, 
examining contemporary portfolio optimization methods and the rationale for utilizing fuzzy logic and CDaR. Section 3 
details the methodology, encompassing data collection, fuzzy modeling, and portfolio construction processes. Section 4 
presents the results of the empirical analysis, followed by a discussion of these findings in Section 5. Finally, Section 6 
concludes the paper with a summary of key findings, implications, and recommendations for future research. 
 
2. Review of Literature 
 

The domain of portfolio optimization has experienced considerable evolution, particularly through the incorporation of 
fuzzy logic and sophisticated risk measures such as Conditional Value-at-Risk (CDaR). This literature review assembles 
essential contributions to the advancement and implementation of fuzzy portfolio optimization techniques, underscoring 
their importance in managing uncertainty and improving financial decision-making. 

Initial contributions to fuzzy portfolio optimization can be traced to Ammar & Khalifa (2003), who developed a fuzzy 
model grounded in Markowitz's mean-variance framework. This model incorporated the notion of fuzziness into portfolio 
selection, facilitating a more sophisticated method for addressing uncertainty in asset returns and risks. Building on this 
foundation, Fei (2007) Explored the optimal strategies for consumption and portfolio selection through a Merton-style 
framework, differentiating between ambiguity and risk an essential viewpoint that highlights the intricacies of investor 
decision-making under conditions of uncertainty. 

Further advancements were made by Ammar (2008), who reconceptualized the portfolio optimization problem as a multi-
objective quadratic programming challenge, utilizing fuzzy numbers for both objectives and constraints. This methodology 
provided enhanced flexibility and a more accurate representation of investor preferences. (Gupta et al. (2008) also advanced 
the discussion by employing fuzzy set theory to formulate a semi-absolute deviation model, which emphasizes the practical 
requirements of investors dealing with uncertainty in asset returns. 
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Vercher (2008) broadened the discourse by applying a semi-infinite programming technique to tackle portfolio selection 
problems characterized by fuzzy returns. This methodological advancement underscored the efficacy of semi-infinite 
programming in navigating the intricacies associated with fuzzy portfolio decision-making. Concurrently, Chen & Huang 
(2009) adopted cluster analysis alongside the Sakawa et al. (1993) method, which is aimed at optimizing equity mutual 
funds while accommodating fuzzy return rates and risks. Their work exemplifies the versatility of fuzzy logic in diverse 
financial contexts. 

The integration of fuzzy logic with CDaR represents a significant advancement in portfolio optimization methodologies. 
CDaR enhances classical risk measures, such as Value at Risk (VaR), by incorporating the severity and duration of potential 
losses into the assessment. Kwon and Law (2014) were pivotal in introducing CDaR as a risk metric in portfolio selection, 
emphasizing its effectiveness in encapsulating downside risk and refining risk management strategies. By enabling a more 
holistic evaluation of risk, CDaR allows investors to consider both the intensity and length of drawdowns, which is crucial 
for effective portfolio construction. 

Li et al. (2020) conducted a comparative analysis of fuzzy portfolio optimization versus traditional approaches within the 
Chinese stock market, revealing its superior performance in managing market uncertainties and delivering enhanced risk-
adjusted returns Huang et al. (2021) further demonstrated the efficacy of combining fuzzy logic with CDaR in portfolio 
optimization. Their proposed model not only utilized CDaR as the risk measure but also showcased substantial advantages 
over traditional mean-variance portfolios. This integration promotes a more adaptive and realistic framework for portfolio 
selection, taking into account the imprecision inherent in financial data and agent preferences. 

Empirical studies have validated the effectiveness of fuzzy portfolio optimization across various market environments. 
Similarly, Wu et al. (2021) explored the application of fuzzy portfolio optimization in the Taiwan stock market, illustrating 
its capacity to improve portfolio performance amid volatile conditions. 

In light of the existing literature, this research seeks to bridge the gap by examining the performance of fuzzy portfolio 
optimization utilizing CDaR specifically within the TSE. Among its innovations, this study employs the Jiménez method 
for fuzzy analysis, which further refines the optimization process. Additionally, a specialized technique for selecting stocks 
from the available universe is implemented, enhancing the relevance and applicability of the findings.  

In summary, the literature demonstrates that fuzzy portfolio optimization and CDaR represent powerful approaches for 
addressing the inherent uncertainty and complexity in financial markets. By incorporating fuzzy logic, these methodologies 
enhance traditional portfolio management strategies, offering investors robust tools to navigate the challenges of volatility 
and imprecision. Through this research, we contribute to the understanding and application of these innovative techniques 
in emerging markets. 

3. Preliminaries 

This section contains two subsections that clarify the mathematical models and data utilized in the study. The explanations 
offered are thorough, to improve the reader's comprehension and encourage their involvement with the topic. 

3.1 Mathematical Models 

This section commences with an introduction to the principles related to evaluating the potential capital loss risk within 
conditional risk as part of the portfolio optimization process. Following this, a model is introduced for the optimization of 
the stock portfolio, particularly focusing on parameters characterized by uncertainty. To tackle this, the fuzzy programming 
model based on Jimenez's approach is utilized, culminating in the presentation of the ultimate model. The calculation of the 
rate of return for each stock is conducted using equation (1). 
 

(1)   rt = Ln(
pt

pt−1
) 

In the aforementioned equation, pt and present the prices of stocks during periods t and t − 1, correspondingly. 

Definition 1. Conditional Drawdown at Risk (CDaR) 

The CDaR metric was initially introduced by Chekhlov et al. (2004) and is regarded as a relatively new risk measure with 
unfavorable characteristics. Its behavior closely resembles that of the value-at-risk conditional risk measure, which was 
initially explored by Rockafellar and Uryasev, (2000). Krokhmal et al. (2005) performed a comparative analysis of these 
two risk measures, in addition to the capital-at-risk conditional risk and value-at-risk conditional risk measures, within the 
context of risk hedging funds. Their study findings suggested that the CDaR measure is more cautious, whereas the value-
at-risk conditional risk measure provides greater flexibility. 

The CDaR model can be expressed as follows; Let 𝑤𝑤(𝑥𝑥, 𝑡𝑡) be the uncompounded portfolio value at time 𝑡𝑡 and suppose that 
𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) is the weights of assets in the portfolio, thus the drawdown function at time 𝑡𝑡 is defined by: 
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𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑥𝑥
0≤𝜏𝜏≤𝑡𝑡

{𝑤𝑤(𝑥𝑥, 𝜏𝜏)} − 𝑤𝑤(𝑥𝑥, 𝑡𝑡) (2) 

Suppose that 𝑟𝑟𝑖𝑖𝑡𝑡  is the rate of return of 𝑖𝑖-th asset in 𝑗𝑗-th trading period. The uncompounded portfolio value at time 𝑗𝑗 equals: 

𝑤𝑤(𝑥𝑥, 𝑗𝑗) = ��1 + �𝑟𝑟𝑖𝑖𝑡𝑡

𝑗𝑗

𝑡𝑡=1

�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (3) 

Then, the drawdown function at time 𝑗𝑗 can be expressed as below. 

 𝑓𝑓(𝑥𝑥, 𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑥𝑥
1≤𝑘𝑘≤𝑗𝑗

����𝑟𝑟𝑖𝑖𝑡𝑡

𝑘𝑘

𝑡𝑡=1

� 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −���𝑟𝑟𝑖𝑖𝑡𝑡

𝑗𝑗

𝑡𝑡=1

� 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (4) 

Considering that CDaR is the average of the worst-case drawdowns observed in the considered sample path, we can define 
CDaR as follows: 

 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝛼𝛼(𝑥𝑥, 𝜂𝜂) = 𝜂𝜂𝛼𝛼 + (1 − 𝛼𝛼)−1�[𝑓𝑓(𝑥𝑥, 𝑗𝑗) − 𝜂𝜂𝛼𝛼]−
𝐽𝐽

𝑗𝑗=1

 (5) 

where 𝜂𝜂 represents the threshold drawdown level which is exceeded by (1 − 𝛼𝛼)𝐽𝐽 drawdowns, and 𝛼𝛼 ∈ [0,1] denotes the 
confidence level. The CDaR model can also be represented as: 

 𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝛼𝛼(𝑥𝑥, 𝜂𝜂) = 𝜂𝜂𝛼𝛼 +
1

(1 − 𝛼𝛼)𝐽𝐽
�𝑚𝑚𝑚𝑚𝑥𝑥 �0, max

1≤𝑘𝑘≤𝑗𝑗
����𝑟𝑟𝑖𝑖𝑡𝑡

𝑘𝑘

𝑡𝑡=1

� 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� −���𝑟𝑟𝑖𝑖𝑡𝑡

𝑗𝑗

𝑡𝑡=1

� 𝑥𝑥𝑖𝑖 − 𝜂𝜂𝛼𝛼

𝑛𝑛

𝑖𝑖=1

�
𝐽𝐽

𝑗𝑗=1

 (6) 

Eqs. (7-12) demonstrate the existence of a linear correlation between the portfolio optimization model and the value-at-risk 
measure 

The linear relationship CDaR is as follows: 

min η +
1

(1 − α)
1
J
��yj�
J

j=1

 

Subjected to 

(7) 

�μixi =
n

i=1

μp (8) 

 yj ≥ ���� rit

k

t=1

� xi

n

i=1

� − ���� rit

j

t=1

� xi

n

i=1

� − η (9) 

  yj ≥ 0 (10) 

 � xi = 1
n

i=1

 (11) 

     xj ≥ 0.      i = 1.2. . . . n (12) 
 

In this mathematical framework, Eq. (7) represents the objective function, which measures the portfolio's value at risk. Eq. 
(8) describes the relationship that equates the portfolio's return with the investor's expected return. Eq. (9) calculates the 
average worst-case capital loss over a specific period, while Eq. (10) requires that the average worst-case capital loss be 
positive. Eq. (11) introduces the budget constraint, ensuring that the sum of the total investment ratios equals 1. Finally, 
constraint (12) specifies that short selling is not allowed, preventing the investment ratios for each asset from assuming 
negative values. 

Constraints 

In the development of a practical portfolio model, it is essential to take into account factors beyond merely risk and returns. 
This consideration allows the mathematical model to better reflect real-world conditions and yield more realistic results. 
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Therefore, this study includes cardinality constraints and Floor and Ceiling Constraints in the proposed model. The 
subsequent section elucidates each of these components. 

Definition 2. Cardinality Constraint 

In this study, the proposed model includes cardinality constraints, which play a crucial role in the construction of an optimal 
portfolio. The cardinality constraint specifies the maximum number of assets that may be included in the portfolio. In this 
constraint, a binary variable Zi represents the selection status of each asset. The expression for the cardinality constraint is 
as follows: 

� Zi

N

i=1

= K (13) 

Zi ∈ {0.1}                i = 1.2. … . n (14) 

Definition 3. Floor and Ceiling Constraints 

The limits on the minimum and maximum investment amounts for each asset within a portfolio can be captured using 
ceiling and floor constraints. These constraints establish the upper and lower limits for allocating funds to each asset. One 
possible representation of the ceiling and floor constraints is as follows: 

 liZi ≤ xi ≤ uiZi.    i = 1.2. … . n (15) 

0 ≤ li ≤ ui ≤ 1 (16) 

Definition 4. The proposed CDaR with Practical Constraints 

The proposed portfolio optimization model with cardinality and floor and ceiling constraints can be formulated as follows: 

  min η +
1

(1 − α)
1
J
��yj�
J

j=1

 

subject to 

(17) 

  �μı�xi =
n

i=1

μp� (18) 

  yj ≥ ���� rit

k

t=1

� xi

n

i=1

� − ���� rit

j

t=1

� xi

n

i=1

� − η (19) 

  yj ≥ 0 (20) 

     � Zi

N

i=1

= K (21) 

     liZi ≤ xi ≤ uiZi.    i = 1.2. … . n (22) 

     Zi ∈ {0.1}                i = 1.2. … . n (23) 

     � xi = 1
n

i=1

 (24) 

     xj ≥ 0.      i = 1.2. … . n (25) 

Definition 5. Fuzzy Programming  
 
Fuzzy programming has been applied in multiple domains, including production planning, energy investment, water 
management, and financial engineering. In the framework of single-objective problems, two prevalent methodologies are 
employed, one of which is the approach developed by Jimenez. This method seeks to maximize the expected value of 
functions while upholding a predetermined level of uncertainty for fuzzy constraints. When endeavoring to maximize these 
functions, a representation of multi-objective fuzzy programming can be expressed through Eq. (26) and Eq. (27). 



 136 

 max�Rijxj    

n

J=1

∀i= 1.2. … . m (26) 

subject to 

� rixi =
n

i=1

b�k     ∀i= 1.2. … . k 

        x ∈ X 

 

(27) 

Proposed Solution Approach 
 
Following the formulation of the primary model of the problem, certain parameters within the model demonstrate fuzzy 
characteristics, including the values associated with the right-hand side and the technological coefficients that constrain the 
problem. A two-stage methodology is employed to address the model presented in this paper. In the first stage, the original 
fuzzy model is converted into a corresponding auxiliary deterministic model. Subsequently, a fuzzy approach is utilized in 
the second stage to obtain the desired final solution. The specific method outlined in this article is referred to as the Jimenez 
method, which will be elaborated upon in the following section. 
 
Definition 6. The Jimenez method 
 
In the context of this study, the methodology utilized by Jimenez et al. was adopted to convert the problem involving 
imprecise coefficients into an equivalent deterministic model. This approach provides significant computational efficiency 
by maintaining linearity without the need for additional objective functions or inequality constraints. To represent the 
imprecise nature of the fuzzy parameters in the problem, a triangular fuzzy distribution was chosen for its computational 
efficiency and ease of data collection. Assuming a triangular fuzzy number, its membership function, denoted as μc̀(x), can 
be expressed using relation (28). 

 

(28) 𝛍𝛍�̀�𝐜(𝐱𝐱) =

⎩
⎪
⎨

⎪
⎧𝐟𝐟𝐜𝐜(𝐱𝐱) =

𝐱𝐱 − 𝐜𝐜𝐩𝐩

𝐜𝐜𝐦𝐦 − 𝐜𝐜𝐩𝐩
 if  𝐜𝐜𝐩𝐩 ≤ 𝐱𝐱 ≤ 𝐜𝐜𝐦𝐦

𝟏𝟏  if  𝐱𝐱 = 𝐜𝐜𝐦𝐦

𝐠𝐠𝐜𝐜(𝐱𝐱) =
𝐜𝐜𝐨𝐨 − 𝐱𝐱
𝐜𝐜𝐨𝐨 − 𝐜𝐜𝐦𝐦

 if  𝐜𝐜𝐦𝐦 ≤ 𝐱𝐱 ≤ 𝐜𝐜𝐨𝐨 ⎭
⎪
⎬

⎪
⎫

 

Furthermore, the anticipated interval, denoted as EI(c̀), and the anticipated value, denoted as EV(c̀), of the fuzzy number is 
defined using Eq. (29) and Eq. (30), respectively. 
 
𝐄𝐄𝐄𝐄(�̀�𝐜) = [𝐄𝐄𝟏𝟏𝐜𝐜 .𝐄𝐄𝟐𝟐𝐜𝐜] = �∫𝟎𝟎

𝟏𝟏 𝐟𝐟𝐜𝐜−𝟏𝟏(𝐱𝐱)𝐝𝐝𝐱𝐱.∫𝟎𝟎
𝟏𝟏 𝐠𝐠𝐜𝐜−𝟏𝟏(𝐱𝐱)𝐝𝐝𝐱𝐱�, (29) 

𝐄𝐄𝐄𝐄(�̀�𝐜) =
𝐄𝐄𝟏𝟏𝐜𝐜 + 𝐄𝐄𝟐𝟐𝐜𝐜

𝟐𝟐
. 

(30) 

 
Given the adoption of the triangular fuzzy distribution for representing the parameters, we will have Eqs. (31-32): 
 

𝐄𝐄𝐄𝐄(𝐜𝐜�) = �
𝟏𝟏
𝟐𝟐

(𝐜𝐜𝐩𝐩 + 𝐜𝐜𝐦𝐦).
𝟏𝟏
𝟐𝟐

(𝐜𝐜𝐦𝐦 + 𝐜𝐜𝐜𝐜)� (31) 

𝐄𝐄𝐄𝐄(𝐜𝐜�) =
𝐜𝐜𝐩𝐩 + 𝟐𝟐𝐜𝐜𝐦𝐦 + 𝐜𝐜𝐨𝐨

𝟒𝟒
 (32) 

 
Now let us contemplate the fuzzy mathematical programming model, which is formulated based on Eq. (33) and 
encompasses the inclusion of fuzzy parameters: 
 

 
)33( 
 

       𝐦𝐦𝐦𝐦𝐦𝐦 𝐙𝐙 = 𝐜𝐜�𝐱𝐱
          s.t 𝐚𝐚�𝐦𝐦𝐱𝐱 ≥ �̀�𝐛𝐦𝐦 𝐦𝐦 = 𝟏𝟏. … . 𝐥𝐥

𝐚𝐚�𝐦𝐦𝐱𝐱 = �̃�𝐛𝐦𝐦 𝐦𝐦 = 𝟏𝟏 + 𝟏𝟏. … .𝐦𝐦
𝐱𝐱 ≥ 𝟎𝟎

 

The imprecision and uncertainty associated with the problem's parameters necessitate the comparison of fuzzy numbers, 
giving rise to two significant concerns: feasibility and optimality. Consequently, it becomes imperative to address the 
following two questions, as outlined by Jimenez et al.: 
 

I.How should the decision vector xx be characterized when the constraints include fuzzy numbers? 
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II.How should the optimality of the objective function be determined in the presence of fuzzy coefficients? 
 
By the Jimenez ranking method, Eq. (34) is formulated for each pair of fuzzy numbers: 
 

)34 (  𝛍𝛍𝐌𝐌(�̀�𝐚. �̀�𝐛) =

⎩
⎪
⎨

⎪
⎧𝟎𝟎  if 𝐄𝐄𝟐𝟐𝐚𝐚 − 𝐄𝐄𝟏𝟏𝐚𝐚 < 𝟎𝟎

𝐄𝐄𝟐𝟐𝐚𝐚 − 𝐄𝐄𝟏𝟏𝐛𝐛

𝐄𝐄𝟐𝟐𝐚𝐚 − 𝐄𝐄𝟏𝟏𝐛𝐛 − �𝐄𝐄𝟏𝟏𝐚𝐚 − 𝐄𝐄𝟐𝟐𝐛𝐛�
 if 𝟎𝟎 ∈ �𝐄𝐄𝟏𝟏𝐚𝐚 − 𝐄𝐄𝟐𝟐𝐛𝐛.𝐄𝐄𝟐𝟐𝐚𝐚 − 𝐄𝐄𝟏𝟏𝐛𝐛

𝟏𝟏  if 𝐄𝐄𝟏𝟏𝐚𝐚 − 𝐄𝐄𝟐𝟐𝐛𝐛 > 𝟎𝟎

 

 
According to the approach proposed by Jimenez et al., when α ≤ μM�ài. b̀i�, it indicates that à is at least as great as b̀  in 
degree α. This relationship is denoted as à ≥ ab̀. In the context of their method, the decision vector x ∈  ℝ is considered 
feasible in degree α if condition (35) is satisfied. 

 
(35) 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦=𝟏𝟏.….𝐦𝐦 �𝛍𝛍𝐌𝐌��̀�𝐚𝐦𝐦𝐱𝐱. �̀�𝐛𝐦𝐦�� = 𝛂𝛂 

 
Thus, about the constraints presented in problem (33), we can establish Eq. (36) as follows: 
 

 
)36 (  

𝐄𝐄𝟐𝟐
𝐚𝐚𝐦𝐦𝐱𝐱 − 𝐄𝐄𝟏𝟏

𝐛𝐛𝐦𝐦

𝐄𝐄𝟐𝟐
𝐚𝐚𝐦𝐦𝐱𝐱 − 𝐄𝐄𝟏𝟏

𝐚𝐚𝐦𝐦𝐱𝐱 + 𝐄𝐄𝟐𝟐
𝐛𝐛𝐦𝐦 − 𝐄𝐄𝟏𝟏

𝐛𝐛𝐦𝐦
≥ 𝛂𝛂         𝐦𝐦 = 𝟏𝟏. … . 𝐥𝐥 

After performing simplifications, relation (36) can be transformed into relation (37) as follows: 
 

)37 (   �(𝟏𝟏 − 𝛂𝛂) ⋅ 𝐄𝐄𝟐𝟐
𝐚𝐚𝐦𝐦 + 𝛂𝛂 ⋅ 𝐄𝐄𝟏𝟏

𝐚𝐚𝐦𝐦�𝐱𝐱 ≥ 𝛂𝛂 ⋅ 𝐄𝐄𝟐𝟐
𝐛𝐛𝐦𝐦 + (𝟏𝟏 − 𝛂𝛂) ⋅ 𝐄𝐄𝟏𝟏

𝐛𝐛𝐦𝐦 .
𝐦𝐦 = 𝟏𝟏. … .𝐦𝐦

 

 
The Eq. (38) will also be valid in the case of a tie condition. 

 

)38 ( 

  
  �̀�𝐚 ≥𝛂𝛂/𝟐𝟐 �̀�𝐛 .  �̀�𝐚 ≤𝛂𝛂/𝟐𝟐 �̀�𝐛 

The equation (38) can be reformulated as relation (39): 
 

)39 ( 
   𝛂𝛂
𝟐𝟐
≤ 𝛍𝛍𝐌𝐌(�̀�𝐚. �̀�𝐛) ≤ 𝟏𝟏 − 𝛂𝛂

𝟐𝟐
 

The solution x0  is considered a satisfactory optimal solution for the model if relation (40) holds. 

)40 ( 
 

   𝛍𝛍𝐌𝐌(�̀�𝐜𝐱𝐱. �̀�𝐜𝐱𝐱𝟎𝟎) ≥
𝟏𝟏
𝟐𝟐

 

Hence, the solution x0  offers an improved solution compared to other feasible vectors (in terms of minimization) by at least 
a 1 2�  degree. Furthermore, we can establish a relation (41) as follows: 

 
)41 ( �̀�𝐜𝐱𝐱 ≥𝟏𝟏/𝟐𝟐 �̀�𝐜𝐱𝐱𝟎𝟎 

 

By utilizing the aforementioned relations, we can deduce the following: 

𝐄𝐄𝟐𝟐𝐜𝐜𝐱𝐱 − 𝐄𝐄𝟏𝟏𝐜𝐜𝐱𝐱
𝟎𝟎

𝐄𝐄𝟐𝟐𝐜𝐜𝐱𝐱 − 𝐄𝐄𝟏𝟏𝐜𝐜𝐱𝐱 + 𝐄𝐄𝟐𝟐𝐜𝐜𝐱𝐱
𝟎𝟎 − 𝐄𝐄𝟏𝟏𝐜𝐜𝐱𝐱

𝟎𝟎 ≥
𝟏𝟏
𝟐𝟐

𝐄𝐄𝟐𝟐𝐜𝐜𝐱𝐱 + 𝐄𝐄𝟏𝟏𝐜𝐜𝐱𝐱

𝟐𝟐
≥
𝐄𝐄𝟐𝟐𝐜𝐜𝐱𝐱

𝟎𝟎 + 𝐄𝐄𝟏𝟏𝐜𝐜𝐱𝐱
𝟎𝟎

𝟐𝟐

 

(42) 

Or 

(43) 

By incorporating relations (37), (39), and (43) into the model (33), we can derive its parametric −α model, represented as 
the below problem: 
 
𝐦𝐦𝐦𝐦𝐦𝐦𝐌𝐌𝐦𝐦𝐦𝐦 𝐙𝐙 = 𝐄𝐄𝐄𝐄(𝐜𝐜�)𝐱𝐱 (44) 

 𝐬𝐬𝐬𝐬𝐛𝐛𝐬𝐬𝐬𝐬𝐜𝐜𝐬𝐬 𝐬𝐬𝐨𝐨: ��(𝟏𝟏 − 𝛂𝛂) ⋅ 𝐄𝐄𝟐𝟐
𝐚𝐚𝐦𝐦 + 𝛂𝛂 ⋅ 𝐄𝐄𝟏𝟏

𝐚𝐚𝐦𝐦�𝐱𝐱 ≥ 𝛂𝛂 ⋅ 𝐄𝐄𝟐𝟐
𝐛𝐛𝐦𝐦 + (𝟏𝟏 − 𝛂𝛂) ⋅ 𝐄𝐄𝟏𝟏

𝐛𝐛𝐦𝐦 .
𝐦𝐦 = 𝟏𝟏. … .𝐦𝐦

 (45) 
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��𝟏𝟏 −
𝛂𝛂
𝟐𝟐
� ⋅ 𝐄𝐄𝟐𝟐

𝐚𝐚𝐦𝐦 +
𝛂𝛂
𝟐𝟐
⋅ 𝐄𝐄𝟏𝟏

𝐚𝐚𝐦𝐦� 𝐱𝐱 ≥
𝛂𝛂
𝟐𝟐
𝐄𝐄𝟐𝟐
𝐛𝐛𝐦𝐦 + �𝟏𝟏 −

𝛂𝛂
𝟐𝟐
� ⋅ 𝐄𝐄𝟏𝟏

𝐛𝐛𝐦𝐦  .  𝐦𝐦 = 𝐥𝐥 + 𝟏𝟏. … .𝐦𝐦 (46) 

𝐌𝐌𝐦𝐦𝐦𝐦𝐌𝐌𝟏𝟏 = �𝐂𝐂𝛃𝛃𝐦𝐦 − 𝐂𝐂𝛃𝛃𝐏𝐏�𝐗𝐗 (47) 

….�
�𝛂𝛂
𝟐𝟐
⋅ 𝐄𝐄𝟐𝟐

𝐚𝐚𝐦𝐦 + �𝟏𝟏 − 𝛂𝛂
𝟐𝟐
� ⋅ 𝐄𝐄𝟏𝟏

𝐚𝐚𝐦𝐦� 𝐱𝐱 ≤ �𝟏𝟏 − 𝛂𝛂
𝟐𝟐
� ⋅ 𝐄𝐄𝟐𝟐

𝐛𝐛𝐦𝐦 +
𝛂𝛂
𝟐𝟐
⋅ 𝐄𝐄𝟏𝟏

𝐛𝐛𝐦𝐦  .  𝐦𝐦 = 𝐥𝐥 + 𝟏𝟏. … .𝐦𝐦
 (48) 

𝐱𝐱 ≥ 𝟎𝟎 (49) 
 
The parameter β signifies the minimum level that the decision-maker considers acceptable for establishing feasible 
constraints. As described in the earlier section, we can create an additional deterministic model that is equal to the primary 
problem model, denoted as equation (38). The additional problem will contain a larger set of constraints compared to the 
main problem, due to the conversion of each equality constraint in the primary model into two inequality constraints in the 
equivalent additional model. 
 
Fuzzy solution approach 
 
Zimmerman introduced the fuzzy solution technique for multi-objective linear programming problems. This method serves 
as the basis for all subsequent approaches in multi-objective linear programming. Zimmerman (1978) and later Lai and 
Huang (1994) established the groundwork by creating the balance table and defining fuzzy membership functions for the 
objective functions. In this paper, Zimmerman's method is utilized to solve the deterministic model presented. The procedure 
of this method involves the following steps: 

 
• The first stage entails identifying the ideal and anti-ideal solutions for the objective functions, which is achieved 
through the resolution of three separate single-objective models. 
 

(52) 𝐌𝐌𝐦𝐦𝐦𝐦𝐌𝐌𝟏𝟏 = �𝐂𝐂𝛃𝛃𝐦𝐦 − 𝐂𝐂𝛃𝛃
𝐩𝐩�𝐗𝐗 

(53) Maxz2 = CβmX       
(54) Maxz3 = �CβO − Cβm�X 

 
Table 1 presents the financial status of various variables used in the analysis of multi-objective linear programming. It 
serves as a crucial component of the fuzzy solution approach, which is designed to optimize multiple objectives in a 
deterministic model. 
 
Table 1 
Statement of Financial Position 

𝐱𝐱𝐦𝐦∗  𝐌𝐌𝟏𝟏 𝐌𝐌𝟐𝟐 𝐌𝐌𝟑𝟑 
X1∗  Minz1 Z1PIS  Z2(X1∗) Z3(X1∗) 
X2
∗  Maxz2 Z1(X2

∗) Z2PIS  Z3(X2
∗) 

X3
∗  Maxz3 Z1(X3

∗) Z2(X3
∗) Z3PIS  

ZiNIS   Max {Z1(X2
∗). Z1(X3

∗)} Min {Z2(X1∗). Z2(X∗ 3)} Min {Z3(X1∗). Z3(X∗ 2)} 
 
• Structure of the Table: 
• Variables (  xi∗): Each row corresponds to a specific decision variable (e.g., X1∗, X2∗ , X3∗), representing different assets 
or liabilities in the financial context. 
• Objective Functions (Z1, Z2, Z3): The columns represent different objective functions that the model aims to 
optimize. These functions are as follows: 
o Z1: Typically represents a minimization objective. 
o Z2 and Z3: Represent maximization objectives. 
Row Breakdown: 
• For each variable variable (e.g., X1∗, X2∗ , X3∗), the table displays: 
o The value associated with the minimization of z1z1 or the maximization of Z2 and Z3 
o Corresponding membership values (e.g., Z1PIS , Z2, and Z3) provide insights into the suitability of each 
solution based on fuzzy set theory. 
• The final row, labeled ZiNIS , summarizes the overall evaluation by applying maximum and minimum 
functions across the values from the previous rows. This includes: 
o The maximum value from the membership functions of Z1 for certain variables. 
o The minimum values from the membership functions of Z2 and Z3indicate the lowest performance scenarios 
for those objectives. 
Table 1 not only aids in visualizing the relationships between different decision variables and their corresponding objectives 
but also lays the groundwork for applying fuzzy logic in decision-making. By analyzing these values, researchers and 
practitioners can derive optimal solutions that balance competing financial objectives effectively. 
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• The second step in the fuzzy solution approach entails the essential task of defining the membership function for 
each objective function. This process is vital for measuring the extent to which each possible solution meets the established 
objectives, based on the variations presented in the balance table. The membership functions facilitate the integration of 
fuzzy logic. 
These functions are crucial as they convert the objective values into a membership scale, which indicates how closely each 
solution aligns with the desired outcomes. By quantifying the objectives in this way, decision-makers can effectively apply 
principles of fuzzy logic to assess and compare potential solutions, ultimately leading to more informed and balanced 
financial decision-making. The membership functions for the objective functions Z1, Z2, and Z3 are defined as follows: 

 

(55) 

         𝛍𝛍𝐌𝐌𝟏𝟏(𝐱𝐱) =

⎩
⎪
⎨

⎪
⎧ 𝟏𝟏 𝐙𝐙𝟏𝟏(𝐗𝐗) ≤ 𝐙𝐙𝟏𝟏𝛃𝛃 PIS 

𝐙𝐙𝟏𝟏𝛃𝛃 NIS − �𝐂𝐂𝛃𝛃𝐦𝐦 − 𝐂𝐂𝛃𝛃𝐏𝐏�𝐗𝐗
𝐙𝐙𝟏𝟏 NIS − 𝐙𝐙𝟏𝟏 PIS 𝐙𝐙𝟏𝟏𝛃𝛃 PIS ≤ 𝐙𝐙𝟏𝟏(𝐗𝐗) ≤ 𝐙𝐙𝟏𝟏𝛃𝛃NIS 

𝟎𝟎 𝐙𝐙𝟏𝟏(𝐗𝐗) ≥ 𝐙𝐙𝟏𝟏𝛃𝛃 NIS 

 

 

(56) 

         μZ2(x) =

⎩
⎪
⎨

⎪
⎧1 Z2(X) ≥ Z2β PIS

Cm βX − Z2β NIS

Z2 PIS − Z2 NIS
Z2β NIS ≤ Z2(X) ≤ Z2β PIS

0 Z2(X) ≤ Z2β NIS

 

 

(57)          μZ3(x) =

⎩
⎪
⎨

⎪
⎧1 Z3(X) ≥ Z3βPIS

�CβO − Cβm�X − Z3β NIS

Z3 PIS − Z3 NIS
Z3βNIS ≤ Z3(X) ≤ Z3β PIS 

0 Z3(X) ≤ Z3β NIS 

 

• The third step: entails transforming the original multi-objective model into an equivalent single-objective model 
using an integration function. The integration function facilitates this conversion process. Additionally, the minimum 
satisfaction level for the objective function is denoted as λ. 
 

          𝛌𝛌 = 𝐦𝐦𝐦𝐦𝐦𝐦{𝛍𝛍𝐌𝐌𝐦𝐦 (𝐱𝐱)} (58) 
 

(59) 
 

(60) 
(61) 

 
(62) 
(63) 
(64) 

 

𝐦𝐦𝐚𝐚𝐱𝐱𝛌𝛌 Subject to 
 

�𝐂𝐂𝛃𝛃𝐦𝐦 − 𝐂𝐂𝛃𝛃𝐏𝐏�𝐗𝐗 + 𝛌𝛌�𝐙𝐙𝟏𝟏𝛃𝛃 𝐍𝐍𝐄𝐄𝐍𝐍 − 𝐙𝐙𝟏𝟏𝛃𝛃 𝐏𝐏𝐄𝐄𝐍𝐍� ≤ 𝐙𝐙𝟏𝟏𝛃𝛃 𝐍𝐍𝐄𝐄𝐍𝐍

𝐂𝐂𝛃𝛃 𝛃𝛃𝐗𝐗 − 𝛌𝛌�𝐙𝐙𝟐𝟐𝛃𝛃 𝐍𝐍𝐄𝐄𝐍𝐍 − 𝐙𝐙𝟐𝟐𝛃𝛃 𝐏𝐏𝐄𝐄𝐍𝐍� ≥ 𝐙𝐙𝟐𝟐𝛃𝛃 𝐍𝐍𝐄𝐄𝐍𝐍

�𝐂𝐂𝛃𝛃𝐎𝐎 − 𝐂𝐂𝐦𝐦 𝛃𝛃�𝐗𝐗 − 𝛌𝛌�𝐙𝐙𝟑𝟑𝛃𝛃 𝐍𝐍𝐄𝐄𝐍𝐍 − 𝐙𝐙𝟑𝟑𝛃𝛃 𝐏𝐏𝐄𝐄𝐍𝐍� ≥ 𝐙𝐙𝟑𝟑𝛃𝛃 𝐍𝐍𝐄𝐄𝐍𝐍

𝐱𝐱 ∈ 𝐅𝐅𝐗𝐗
𝛌𝛌 ∈ [𝟎𝟎.𝟏𝟏]

 

It is crucial to incorporate Eq. (49) as a deterministic constraint into the original problem to ensure precision. Consequently, 
the mathematical formulation of the problem is structured as follows: 

           Z1 = max� 
6

j=1

rixj
 (65) 

           Z2 = min η +
1

(1 − α)
1
J
��yj�
J

j=1

 

 

(66) 

subject to: 
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        yj ≥ ���� rit

k

t=1

� xi

n

i=1

� − ���� rit

j

t=1

� xi

n

i=1

� − η (67) 
 

        � rixi2 −  � bi 

k

t=1

xi ≥
 n

i=1

d (68) 
 

     
         yj ≥ 0 
 (69) 

     � Zi

N

i=1

= K (70) 

     liZi ≤ xi ≤ uiZi.    i = 1.2. . . . . n  (71) 

     Zi ∈ {0.1}                i = 1.2. … . n  (72) 

 

        � xi = 1
n

i=1

            (73) 
 

      
         xj ≥ 0.      i = 1.2. . . . n           (74) 

 
 

 
4. Data collection and analysis 
 

To evaluate the various models, our research utilized data acquired from the Tehran Stock Exchange (TSE). The assets 
chosen for examination are detailed in Table 2. A comprehensive and systematic screening process was implemented to 
select these assets based on specific criteria. 

The initial criterion required a minimum market capitalization of 100 billion units for the stocks under consideration. In 
addition, the stocks had to possess a trading history of at least 9 months within the year to ensure reliability and relevance. 
Moreover, an intentional effort was made to ensure the inclusion of stocks from diverse industries, providing a more 
representative sample for analysis. 

This data collection approach represents a significant innovation in our study, as it guarantees that the dataset contains 
stocks that meet rigorous criteria while also improving the comprehensiveness and relevance of the analysis. By utilizing 
these clearly defined screening criteria, we have established a strong dataset that enables a detailed and comparative analysis 
of portfolio optimization models with real-world data from the TSE. 

Table 2 
Selected asset data from TSE 
Asset  

SEFH BKSZ PKLJ 
BAMA BENC FOLD 
IKHR FRBZ IKCO 
BMLT KALA  
BIEJ OFRS  
HFRS SAHD  
KSHI HWEB  
MKBT MAPN  
 
5. Results Analysis 

This section provides a comprehensive analysis of the results obtained from employing an optimally selected portfolio 
sample, consisting of shares from particular companies listed on the Tehran Stock Exchange (TSE). The analysis 
incorporates random parameters to account for the inherent uncertainties present in financial markets. To ensure the 
robustness of our findings, the model is developed and assessed under two distinct scenarios: conditions of certainty and 
uncertainty. 

To identify the optimal portfolio, the proposed model is systematically solved using various values of the parameter 𝛽𝛽. As 
presented in Table 3, this table displays the portfolio values associated with each 𝛽𝛽 value, along with the optimal stocks 
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selected and their corresponding allocations. In this context, 𝛽𝛽 is defined as the minimum acceptable threshold, which 
represents potential constraints established by the decision maker to signify their desired level of confidence regarding the 
investment. 

To further refine the modeling process, a cardinality constraint, denoted as k = 3 , has been imposed. This constraint limits 
the optimal portfolio to a maximum of three assets. Additionally, the research sets specific bounds for the investment 
allocations, with a lower limit of li = 0.1  and an upper limit of ui = 0.45  for each asset i. These parameters are essential 
for establishing the investment constraints and provide a structured framework for effective portfolio optimization. 

Table 3 
Results of Model Solutions for Various 𝛽𝛽 Values  

Portfolio Value value Asset value β Portfolio Value value Asset value β 

0.23 
0.45 HFRS 

0.8 0.32 
0.45 HFRS 

0.6 0.1 KALA 0.1 KALA 
0.45 OFRS 0.45 OFRS 

0.18 
0.45 HFRS 

0.9 0.27 
0.45 HFRS 

0.7 0.1 KALA 0.1 KALA 
0.45 OFRS 0.45 OFRS 

After analyzing the results obtained from solving the model presented in Table 3, it is apparent that the portfolio displays 
varying values across different 𝛽𝛽 values. Specifically, as the minimum acceptable threshold for potential constraints, 
represented by 𝛽𝛽, decreases, the value of the constructed portfolio shows an increase. Upon evaluating the optimal stocks 
within each portfolio, it is observed that the value of 𝛽𝛽 does not influence stock selection, as evidenced by the consistent 
inclusion of options such as HFRS, OFRS, and KALA in all portfolios. 

To validate the study, the model is developed and evaluated under two distinct conditions: uncertainty and certainty. Tables 
4 and 5 present and explain the results for both scenarios, confirming the research findings. 

In this section, we seek to validate the findings presented in the previous sections of the research by conducting problem 
modeling under conditions of certainty. This approach allows for a more straightforward assessment of the optimal portfolio 
configuration, facilitating comparisons with results obtained under conditions of uncertainty. 

Table 4 illustrates that the optimal stocks selected for the portfolio remain consistent between the certainty and uncertainty 
scenarios, specifically highlighting the inclusion of KALA, HFRS, and OFRS shares. Notably, the allocation percentages 
of these stocks exhibit remarkable stability across both analyzed portfolios, indicating a strong resistance to variability in 
market conditions. 

The consistency in stock selection not only strengthens the robustness of the proposed model but also highlights the 
reliability of these assets within the investment framework. This stability further indicates that the selected assets have 
intrinsic characteristics that make them advantageous regardless of the level of market certainty, which is a crucial factor 
for investors seeking to construct resilient portfolios. 

Table 4 
Preferred Stocks and their Quantities in the Portfolio under Certainty and Fuzzy Uncertainty Scenarios  

Certainty Uncertainty 
value Asset value Asset 
0.45 HFRS 0.45 HFRS 
0.1 KALA 0.1 KALA 

0.45 OFRS 0.45 OFRS 
 

Table 5 delineates the portfolio's valuation under conditions of certainty and fuzzy uncertainty.  The results obtained from 
solving the model under both certainty and fuzzy uncertainty conditions, as outlined in Table 5, reveal a higher portfolio 
valuation under certainty, also for fuzzy uncertainty portfolios with smaller values of β, signifying a more favorable 
outcome. As indicated in Table 4, the analysis emphasizes the significance of KALA, HFRS, and OFRS shares as 
fundamental components of the optimal portfolio. The assets allocated to this portfolio maintain the specified ratios, with 
the maximum value of the examined stocks in the portfolio reaching 0.32. 

Table 5 
Portfolio Valuation under Certainty and Fuzzy Uncertainty Conditions 

Portfolio value under Certainty Portfolio value under Fuzzy Uncertainty value β 

0.62 

0.32 0.6 
0.27 0.7 
0.23 0.8 
0.18 0.9 
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In conclusion, the findings from this section corroborate the initial research results, demonstrating that the optimal portfolio 
construction is not only effective under certainty but also maintains its integrity when subjected to varying levels of 
uncertainty. 

Table 4 and Table 5 provide a comprehensive overview of the allocation of each share within the portfolio, in conjunction 
with the corresponding optimal portfolio values for both certainty and uncertainty scenarios. These tables serve as pivotal 
tools for assessing the robustness of the selected optimal shares and their allocations. 

Visualizing Optimal Allocation Proportions 
 
Fig. 1 illustrates the optimal allocation proportions for the portfolio, highlighting the exclusion of stocks that do not qualify 
as optimal choices. According to Table 4, the stocks KALA, HFRS, and OFRS form the optimal portfolio, with allocation 
values of 0.10, 0.45, and 0.45, respectively. The visual representation in Figure 1 emphasizes the relative investment levels 
assigned to each stock, reflecting a strategic approach to maximizing returns while managing risk in uncertain market 
conditions. This framework demonstrates how selective asset allocation can enhance the portfolio's overall performance. 

 

Fig. 1. Allocation Ratio of Shares in the Optimal Portfolio Amidst Uncertainty 

Fig. 2 serves as a visual representation of these allocation proportions, effectively illustrating the distribution of investments 
among the selected assets within the portfolio under conditions characterized by certainty. The visual depiction not only 
enhances the clarity of the allocation strategy but also underscores the relative significance of each stock within the optimal 
portfolio framework. By clearly delineating the allocation ratios, Fig. 2 allows for a straightforward understanding of how 
these stocks are prioritized, facilitating an assessment of their roles in achieving optimal investment outcomes. 

 

Fig. 2. Allocation Ratio of Shares in the Optimal Portfolio Amidst Uncertainty 

This graphical representation complements the quantitative data provided in Table 4, reinforcing the idea that the chosen 
allocation strategy is not solely based on numerical values, but also involves careful consideration of each asset's potential 
to contribute to the portfolio's success. 

A comparison between the results of the deterministic and non-deterministic models, as shown in Tables 4 and 5, indicates 
that amid uncertainty, shares KALA, HFRS, and OFRS are incorporated into the portfolio with weights of 0.10, 0.45, and 
0.45, respectively. Ultimately, the optimal value of the portfolio amounts to 0.32. Conversely, in the deterministic scenario 
depicted in Tables 5 and 6, the chosen stocks for the portfolio remain the same, namely KALA, HFRS, and OFRS, with 
identical weights of 0.10, 0.45, and 0.45. The optimal value of the portfolio in this case totals 0.62, surpassing the value 
obtained from the uncertain model. This difference highlights the increased value of the portfolio under conditions of 
certainty. 
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6. Conclusion and discussion 

The forthcoming study aims to explore the optimization of portfolios consisting of shares from selected companies listed 
on the Tehran Stock Exchange, particularly focusing on sectors currently experiencing growth. This research is situated 
within a context marked by significant stock market volatility, a phenomenon that has become increasingly prominent in 
recent years. It also recognizes the inherent risks associated with investing in such a volatile environment. To address these 
challenges effectively, the study employs the Conditional Value-at-Risk (CDaR) measure as a prudent risk metric for 
evaluating investments within the stock market. This risk measure is classified as a downside risk metric, making it suitable 
for both risk assessment and portfolio optimization, as it considers the probability distribution of asset returns. 
 
To enhance the applicability and relevance of the research, the study integrates additional elements reflecting investor 
preferences, including constraints such as cardinality restrictions—limits on the number of assets included in the portfolio—
as well as upper and lower bounds that operate under conditions of uncertainty. The incorporation of fuzzy programming 
techniques is a fundamental aspect of this study, enabling the assessment of portfolios in uncertain contexts and facilitating 
a more nuanced analysis of potential outcomes. The planning approach proposed by Jimenez is utilized to effectively 
implement these constraints, while problem-solving is supported through Zimmerman's method. 
 
The findings from this comprehensive analysis underscore the effectiveness of the proposed model in constructing an 
optimal portfolio. Notably, the results reveal that the portfolio's value is significantly higher under conditions of certainty 
compared to those characterized by uncertainty. This conclusion remains valid even when both portfolios are developed 
under similar circumstances, differing only in their respective levels of certainty. Such findings suggest that portfolios 
inherently possess greater intrinsic value when situated in certain environments, indicating that certainty plays a crucial role 
in enhancing asset valuation. 
 
The outcomes of this research are expected to provide valuable insights for various stakeholders in the finance sector, 
including scholars, individual investors, investment fund managers, and other market participants. Looking forward, future 
research initiatives may focus on examining and comparing diverse alternative portfolio optimization models applicable to 
the stock market. These studies could employ various methodologies to effectively address uncertainties in mathematical 
modeling. Additionally, to improve the alignment of mathematical models and their results with the complexities of real-
world market dynamics, future investigations might consider incorporating practical constraints, such as liquidity limitations 
and transaction costs, into the portfolio optimization framework. Such enhancements would significantly improve the 
model's relevance, ensuring its applicability and effectiveness in real-world investment scenarios. 
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